Abstract
Objectives
Pneumatic tube transportation of samples is an effective way of reducing turn-around-time, but evidence of the effect of pneumatic tube transportation on urine samples is lacking. We thus wished to investigate the effect of pneumatic tube transportation on various components in urine, in order to determine if pneumatic tube transportation of these samples is feasible.
Methods
One-hundred fresh urine samples were collected in outpatient clinics and partitioned with one partition being carried by courier to the laboratory, while the other was sent by pneumatic tube system (Tempus600). Both partitions were then analysed for soluble components and particles, and the resulting mean difference and limits of agreement were calculated.
Results
Albumin, urea nitrogen, creatinine, protein and squamous epithelial cells were unaffected by transportation in the Tempus600 system, while bacteria, renal tubular epithelial cells, white blood cells and red blood cells were affected and potassium and sodium may have been affected.
Conclusions
Though pneumatic tube transportation did affect some of the investigated components, in most cases the changes induced were clinically acceptable, and hence samples could be safely transported by the Tempus600 pneumatic tube system. For bacteria, white blood cells and red blood cells local quality demands will determine if pneumatic tube transportation is appropriate.
Acknowledgments
The authors would like to thank the patients and staff of the department of Biochemistry and Immunology at Lillebaelt Hospital.
-
Research funding: I. Brandslund has previously received research funding from Timedico (previous owners of Tempus600), though no funding was received for the current study.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: Authors state no conflict of interest.
-
Ethical approval: The evaluation was performed in compliance with the Helsinki Declaration, Danish law and European data-protection regulations.
References
1. Andersen, I, Mogensen, N, Brandslund, I. Stability of biochemical components in blood samples transported by tempus600/sysmex GLP robot reception system. J Appl Lab Med: An AACC Publication 2017;1:376–86. https://doi.org/10.1373/jalm.2016.021188.Suche in Google Scholar PubMed
2. Suchsland, J, Winter, T, Greiser, A, Streichert, T, Otto, B, Mayerle, J, et al.. Extending laboratory automation to the wards: effect of an innovative pneumatic tube system on diagnostic samples and transport time. Clin Chem Lab Med 2017;55:225–30. https://doi.org/10.1515/cclm-2016-0380.Suche in Google Scholar PubMed
3. Fernandes, CM, Worster, A, Eva, K, Hill, S, McCallum, C. Pneumatic tube delivery system for blood samples reduces turnaround times without affecting sample quality. J Emerg Nurs 2006;32:139–43. https://doi.org/10.1016/j.jen.2005.11.013.Suche in Google Scholar PubMed
4. Guss, DA, Chan, TC, Killeen, JP. The impact of a pneumatic tube and computerized physician order management on laboratory turnaround time. Ann Emerg Med 2008;51:181–5. https://doi.org/10.1016/j.annemergmed.2007.03.010.Suche in Google Scholar PubMed
5. Kapoula, GV, Kontou, PI, Bagos, PG. The impact of pneumatic tube system on routine laboratory parameters: a systematic review and meta-analysis. Clin Chem Lab Med 2017;55:1834–44. https://doi.org/10.1515/cclm-2017-0008.Suche in Google Scholar PubMed
6. Plebani, M, Zaninotto, M. Pneumatic tube delivery systems for patient samples: evidence of quality and quality of evidence. Clin Chem Lab Med 2011;49:1245–6. https://doi.org/10.1515/cclm.2011.216.Suche in Google Scholar
7. Dolscheid-Pommerich, RC, Klarmann-Schulz, U, Conrad, R, Stoffel-Wagner, B, Zur, B. Evaluation of the appropriate time period between sampling and analyzing for automated urinalysis. Biochem Med (Zagreb) 2016;26:82–9. https://doi.org/10.11613/BM.2016.008.Suche in Google Scholar PubMed PubMed Central
8. Kouri, T, Malminiemi, O, Penders, J, Pelkonen, V, Vuotari, L, Delanghe, J. Limits of preservation of samples for urine strip tests and particle counting. Clin Chem Lab Med 2008;46:703–13. https://doi.org/10.1515/cclm.2008.122.Suche in Google Scholar PubMed
9. Heireman, L, Van Geel, P, Musger, L, Heylen, E, Uyttenbroeck, W, Mahieu, B. Causes, consequences and management of sample hemolysis in the clinical laboratory. Clin Biochem 2017;50:1317–22. https://doi.org/10.1016/j.clinbiochem.2017.09.013.Suche in Google Scholar PubMed
10. Triger, DR, Smith, JW. Survival of urinary leucocytes. J Clin Pathol 1966;19:443–7. https://doi.org/10.1136/jcp.19.5.443.Suche in Google Scholar PubMed PubMed Central
11. Hastrup, J, Christensen, H, Madsen, JS, Mogensen, CB, Brandslund, I. Stability of biochemical components in blood samples transported by the new dedicated blood tube transport system, Tempus 600. Klinisk Biokemi i Norden 2013;25:38–46.Suche in Google Scholar
12. Gils, C, Broell, F, Vinholt, PJ, Nielsen, C, Nybo, M. Use of clinical data and acceleration profiles to validate pneumatic transportation systems. Clin Chem Lab Med 2020;58:560–8. https://doi.org/10.1515/cclm-2019-0881.Suche in Google Scholar PubMed
13. Bland, JM, Altman, DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–10.10.1016/j.ijnurstu.2009.10.001Suche in Google Scholar
14. Previtali, G, Ravasio, R, Seghezzi, M, Buoro, S, Alessio, MG. Performance evaluation of the new fully automated urine particle analyser UF-5000 compared to the reference method of the Fuchs-Rosenthal chamber. Clin Chim Acta 2017;472:123–30. https://doi.org/10.1016/j.cca.2017.07.028.Suche in Google Scholar PubMed
15. Ceriotti, F, Fernandez-Calle, P, Klee, GG, Nordin, G, Sandberg, S, Streichert, T, et al.. Criteria for assigning laboratory measurands to models for analytical performance specifications defined in the 1st EFLM Strategic Conference. Clin Chem Lab Med 2017;55:189–94. https://doi.org/10.1515/cclm-2016-0091.Suche in Google Scholar PubMed
16. Ko, DH, Lee, SW, Hyun, J, Kim, HS, Park, MJ, Shin, DH. Proposed imprecision quality goals for urinary albumin/creatinine ratio. Ann Lab Med 2018;38:420–4. https://doi.org/10.3343/alm.2018.38.5.420.Suche in Google Scholar PubMed PubMed Central
17. Palmer, BF, Clegg, DJ. The use of selected urine chemistries in the diagnosis of kidney disorders. Clin J Am Soc Nephrol : CJASN 2019;14:306–16. https://doi.org/10.2215/cjn.10330818.Suche in Google Scholar PubMed PubMed Central
18. De Rosa, R, Grosso, S, Lorenzi, G, Bruschetta, G, Camporese, A. Evaluation of the new Sysmex UF-5000 fluorescence flow cytometry analyser for ruling out bacterial urinary tract infection and for prediction of Gram negative bacteria in urine cultures. Clin Chim Acta 2018;484:171–8. https://doi.org/10.1016/j.cca.2018.05.047.Suche in Google Scholar PubMed
19. Ren, C, Wu, J, Jin, M, Wang, X, Cao, H. Rapidly discriminating culture-negative urine specimens from patients with suspected urinary tract infections by UF-5000. Bioanalysis; 2018.10.4155/bio-2018-0175Suche in Google Scholar PubMed
20. Kim, SY, Park, Y, Kim, H, Kim, J, Koo, SH, Kwon, GC. Rapid screening of urinary tract infection and discrimination of gram-positive and gram-negative bacteria by automated flow cytometric analysis using sysmex UF-5000. J Clin Microbiol 2018;56. https://doi.org/10.1128/jcm.02004-17.Suche in Google Scholar PubMed PubMed Central
21. SysmexCorporation S. Fully automated urine particle analyzer UF-5000 general information. Kobe: Sysmex Corporation; 2016. 43–55 pp.Suche in Google Scholar
22. Fraser, CG, Hyltoft Petersen, P, Libeer, JC, Ricos, C. Proposals for setting generally applicable quality goals solely based on biology. Ann Clin Biochem 1997;34:8–12. https://doi.org/10.1177/000456329703400103.Suche in Google Scholar PubMed
23. Oyaert, M, Speeckaert, M, Boelens, J, Delanghe, JR. Renal tubular epithelial cells add value in the diagnosis of upper urinary tract pathology. Clin Chem Lab Med 2020;58:597–604. https://doi.org/10.1515/cclm-2019-1068.Suche in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/cclm-2020-1198).
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial
- Home pregnancy tests: quality first
- Review
- Non-invasive determination of uric acid in human saliva in the diagnosis of serious disorders
- Opinion Papers
- Basophil counting in hematology analyzers: time to discontinue?
- The role of laboratory hematology between technology and professionalism: the paradigm of basophil counting
- Recommendations for validation testing of home pregnancy tests (HPTs) in Europe
- General Clinical Chemistry and Laboratory Medicine
- The use of preanalytical quality indicators: a Turkish preliminary survey study
- The Italian External Quality Assessment (EQA) program on urinary sediment by microscopy examination: a 20 years journey
- Non-HDL-C/TG ratio indicates significant underestimation of calculated low-density lipoprotein cholesterol (LDL-C) better than TG level: a study on the reliability of mathematical formulas used for LDL-C estimation
- Evaluation of the protein gap for detection of abnormal serum gammaglobulin level: an imperfect predictor
- Impact of routine S100B protein assay on CT scan use in children with mild traumatic brain injury
- Using machine learning to develop an autoverification system in a clinical biochemistry laboratory
- Effect of collection matrix, platelet depletion, and storage conditions on plasma extracellular vesicles and extracellular vesicle-associated miRNAs measurements
- Pneumatic tube transportation of urine samples
- Evaluation of the first immunosuppressive drug assay available on a fully automated LC-MS/MS-based clinical analyzer suggests a new era in laboratory medicine
- A validated LC-MS/MS method for the simultaneous quantification of the novel combination antibiotic, ceftolozane–tazobactam, in plasma (total and unbound), CSF, urine and renal replacement therapy effluent: application to pilot pharmacokinetic studies
- Immunosuppressant quantification in intravenous microdialysate – towards novel quasi-continuous therapeutic drug monitoring in transplanted patients
- Reference Values and Biological Variations
- Reference intervals for venous blood gas measurement in adults
- Cardiovascular Diseases
- Detection and functional characterization of a novel MEF2A variation responsible for familial dilated cardiomyopathy
- Diabetes
- Evaluation of the ARKRAY HA-8190V instrument for HbA1c
- Infectious Diseases
- An original multiplex method to assess five different SARS-CoV-2 antibodies
- Evaluation of dried blood spots as alternative sampling material for serological detection of anti-SARS-CoV-2 antibodies using established ELISAs
- Variability of cycle threshold values in an external quality assessment scheme for detection of the SARS-CoV-2 virus genome by RT-PCR
- The vasoactive peptide MR-pro-adrenomedullin in COVID-19 patients: an observational study
- Corrigenda
- Corrigendum to: Understanding and managing interferences in clinical laboratory assays: the role of laboratory professionals
- Corrigendum to: Age appropriate reference intervals for eight kidney function and injury markers in infants, children and adolescents
- Letters to the Editor
- A panhaemocytometric approach to COVID-19: a retrospective study on the importance of monocyte and neutrophil population data on Sysmex XN-series analysers
- Letter in reply to the letter to the editor of Harte JV and Mykytiv V with the title “A panhaemocytometric approach to COVID-19: a retrospective study on the importance of monocyte and neutrophil population data”
- SARS-CoV-2 serologic tests: do not forget the good laboratory practice
- Long-term kinetics of anti-SARS-CoV-2 antibodies in a cohort of 197 hospitalized and non-hospitalized COVID-19 patients
- Self-sampling at home using volumetric absorptive microsampling: coupling analytical evaluation to volunteers’ perception in the context of a large scale study
- Vortex mixing to alleviate pseudothrombocytopenia in a blood specimen with platelet satellitism and platelet clumps
- Comparative evaluation of the fully automated HemosIL® AcuStar ADAMTS13 activity assay vs. ELISA: possible interference by autoantibodies different from anti ADAMTS-13
- Significant interference on specific point-of-care glucose measurements due to high dose of intravenous vitamin C therapy in critically ill patients
- As time goes by, on that you can rely … preservation of urine samples for morphological analysis of erythrocytes and casts
- Stability of control materials for α-thalassemia immunochromatographic strip test
- Reformulated Architect® cyclosporine CMIA assay: improved imprecision, worse comparability between methods
- Urine-to-plasma contamination mimicking acute kidney injury: small drops with major consequences
- Automated Mindray CL-1200i chemiluminescent assays of renin and aldosterone for the diagnosis of primary aldosteronism
- Use of common reference intervals does not necessarily allow inter-method numerical result trending
- Reply to Dr Hawkins regarding comparability of results for monitoring
Artikel in diesem Heft
- Frontmatter
- Editorial
- Home pregnancy tests: quality first
- Review
- Non-invasive determination of uric acid in human saliva in the diagnosis of serious disorders
- Opinion Papers
- Basophil counting in hematology analyzers: time to discontinue?
- The role of laboratory hematology between technology and professionalism: the paradigm of basophil counting
- Recommendations for validation testing of home pregnancy tests (HPTs) in Europe
- General Clinical Chemistry and Laboratory Medicine
- The use of preanalytical quality indicators: a Turkish preliminary survey study
- The Italian External Quality Assessment (EQA) program on urinary sediment by microscopy examination: a 20 years journey
- Non-HDL-C/TG ratio indicates significant underestimation of calculated low-density lipoprotein cholesterol (LDL-C) better than TG level: a study on the reliability of mathematical formulas used for LDL-C estimation
- Evaluation of the protein gap for detection of abnormal serum gammaglobulin level: an imperfect predictor
- Impact of routine S100B protein assay on CT scan use in children with mild traumatic brain injury
- Using machine learning to develop an autoverification system in a clinical biochemistry laboratory
- Effect of collection matrix, platelet depletion, and storage conditions on plasma extracellular vesicles and extracellular vesicle-associated miRNAs measurements
- Pneumatic tube transportation of urine samples
- Evaluation of the first immunosuppressive drug assay available on a fully automated LC-MS/MS-based clinical analyzer suggests a new era in laboratory medicine
- A validated LC-MS/MS method for the simultaneous quantification of the novel combination antibiotic, ceftolozane–tazobactam, in plasma (total and unbound), CSF, urine and renal replacement therapy effluent: application to pilot pharmacokinetic studies
- Immunosuppressant quantification in intravenous microdialysate – towards novel quasi-continuous therapeutic drug monitoring in transplanted patients
- Reference Values and Biological Variations
- Reference intervals for venous blood gas measurement in adults
- Cardiovascular Diseases
- Detection and functional characterization of a novel MEF2A variation responsible for familial dilated cardiomyopathy
- Diabetes
- Evaluation of the ARKRAY HA-8190V instrument for HbA1c
- Infectious Diseases
- An original multiplex method to assess five different SARS-CoV-2 antibodies
- Evaluation of dried blood spots as alternative sampling material for serological detection of anti-SARS-CoV-2 antibodies using established ELISAs
- Variability of cycle threshold values in an external quality assessment scheme for detection of the SARS-CoV-2 virus genome by RT-PCR
- The vasoactive peptide MR-pro-adrenomedullin in COVID-19 patients: an observational study
- Corrigenda
- Corrigendum to: Understanding and managing interferences in clinical laboratory assays: the role of laboratory professionals
- Corrigendum to: Age appropriate reference intervals for eight kidney function and injury markers in infants, children and adolescents
- Letters to the Editor
- A panhaemocytometric approach to COVID-19: a retrospective study on the importance of monocyte and neutrophil population data on Sysmex XN-series analysers
- Letter in reply to the letter to the editor of Harte JV and Mykytiv V with the title “A panhaemocytometric approach to COVID-19: a retrospective study on the importance of monocyte and neutrophil population data”
- SARS-CoV-2 serologic tests: do not forget the good laboratory practice
- Long-term kinetics of anti-SARS-CoV-2 antibodies in a cohort of 197 hospitalized and non-hospitalized COVID-19 patients
- Self-sampling at home using volumetric absorptive microsampling: coupling analytical evaluation to volunteers’ perception in the context of a large scale study
- Vortex mixing to alleviate pseudothrombocytopenia in a blood specimen with platelet satellitism and platelet clumps
- Comparative evaluation of the fully automated HemosIL® AcuStar ADAMTS13 activity assay vs. ELISA: possible interference by autoantibodies different from anti ADAMTS-13
- Significant interference on specific point-of-care glucose measurements due to high dose of intravenous vitamin C therapy in critically ill patients
- As time goes by, on that you can rely … preservation of urine samples for morphological analysis of erythrocytes and casts
- Stability of control materials for α-thalassemia immunochromatographic strip test
- Reformulated Architect® cyclosporine CMIA assay: improved imprecision, worse comparability between methods
- Urine-to-plasma contamination mimicking acute kidney injury: small drops with major consequences
- Automated Mindray CL-1200i chemiluminescent assays of renin and aldosterone for the diagnosis of primary aldosteronism
- Use of common reference intervals does not necessarily allow inter-method numerical result trending
- Reply to Dr Hawkins regarding comparability of results for monitoring