Startseite The evolutionary pathway of the staphylococcal cassette chromosome element
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The evolutionary pathway of the staphylococcal cassette chromosome element

  • Adéla Indráková , Ivana Mašlaňová EMAIL logo , Viera Kováčová , Jiří Doškař und Roman Pantůček
Veröffentlicht/Copyright: 25. Dezember 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 71 Heft 11

Abstract

The staphylococcal cassette chromosome (SCC) element can carry resistance genes to antibiotics, disinfectants, and heavy metals, contributing to the survival of strains in the environment and causing difficulties in the treatment of staphylococcal infections. Methicillin resistance in staphylococci, which is of particular clinical significance, is encoded by staphylococcal cassette chromosome mec (SCCmec). Despite the importance of the SCC element and description of multiple nucleotide sequences, the information about its origin and evolution is still scarce. Here, we present a phylogenetic analysis of SCC elements that is unique in the use of whole SCC sequences. A phylogenetic tree for a noteworthy number of 81 SCC elements based on global sequence alignment was constructed. The SCC clustering did not reflect the genetic relationships of bacteria containing the SCC elements, but was done according to type, determined by the combination of mec gene complex class and ccr gene complex type. The results emphasise the horizontal gene transfer as a means of spread of SCC elements in bacterial strains. Overall, this study contributes to the understanding of SCC emergence, evolution, and dissemination.

Acknowledgements

This work was supported by a grant from the Czech Science Foundation (GP13-05069P). Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum, provided under the programme “Projects of Large Infrastructure for Research, Development, and Innovations” (LM2010005), is greatly appreciated. We thank Eva Kodytková for her valuable help with this manuscript.

Abbreviations

ACME

arginine catabolic mobile element

CA-MRSA

community-acquired methicillin-resistant Staphylococcus aureus

CC

clonal complex

ccr

chromosome cassette recombinase

CoNS

coagulase-negative staphylococci

HA-MRSA

hospital-acquired methicillin-resistant Staphylococcus aureus

HGT

horizontal gene transfer

LCB

locally collinear block

MGE

mobile genetic element

MLST

multilocus sequence typing

MRSA

methicillin-resistant Staphylococcus aureus

MSSA

methicillin-susceptible Staphylococcus aureus

SCC

staphylococcal cassette chromosome

SCCmec

staphylococcal cassette chromosome mec

ST

sequence type

References

Aires de Sousa M. & de Lencastre H. 2004. Bridges from hospitals to the laboratory: genetic portraits of methicillin-resistant Staphylococcus aureus clones. FEMS Immunol. Med. Microbiol. 40: 101-–111.10.1016/S0928-8244(03)00370-5Suche in Google Scholar

Albrecht N., Jatzwauk L., Slickers P., Ehricht R. & Monecke S. 2011. Clonal replacement of epidemic methicillin-resistant Staphylococcus aureus strains in a German university hospital over a period of eleven years. PLoS One 6: e28189.10.1371/journal.pone.0028189Suche in Google Scholar PubMed PubMed Central

Argudin M.A., Fetsch A., Tenhagen B.A., Hammerl J.A., Hertwig S., Kowall J., Rodicio M.R., Kasbohrer A., Helmuth R., Schroeter A., Mendoza M.C., Braunig J., Appel B. & Guerra B. 2010. High heterogeneity within methicillinresistant Staphylococcus aureus ST398 isolates, defined by Cfr9I macrorestriction-pulsed-field gel electrophoresis profiles and spa and SCCmec types. Appl. Environ. Microbiol. 76: 652-–658.10.1128/AEM.01721-09Suche in Google Scholar PubMed PubMed Central

Armand-Lefevre L., Ruimy R. & Andremont A. 2005. Clonal comparison of Staphylococcus aureus isolates from healthy pig farmers, human controls, and pigs. Emerg. Infect. Dis. 11: 711-–714.10.3201/eid1105.040866Suche in Google Scholar PubMed PubMed Central

Baba T., Kuwahara-Arai K., Uchiyama I., Takeuchi F., Ito T. & Hiramatsu K. 2009. Complete genome sequence of Macrococcus caseolyticus strain JCSCS5402, reflecting the ancestral genome of the human-pathogenic staphylococci. J. Bacteriol. 191: 1180-–1190.10.1128/JB.01058-08Suche in Google Scholar PubMed PubMed Central

Barbier F., Ruppe E., Hernandez D., Lebeaux D., Francois P., Felix B., Desprez A., Maiga A., Woerther P.L., Gaillard K., Jeanrot C., Wolff M., Schrenzel J., Andremont A. & Ruimy R. 2010. Methicillin-resistant coagulase-negative staphylococci in the community: high homology of SCCmec IVa between Staphylococcus epidermidis and major clones of methicillinresistant Staphylococcus aureus. J. Infect. Dis. 202: 270-–281.10.1086/653483Suche in Google Scholar PubMed

Bjorkeng E.K., Tessema G.T., Lundblad E.W., Butaye P., Willems R., Sollid J.E., Sundsfjord A. & Hegstad K. 2010. CcrABEnt serine recombinase genes are widely distributed in the Enterococcus faecium and Enterococcus casseliflavus species groups and are expressed in E. faecium. Microbiology 156: 3624-–3634.10.1099/mic.0.041491-0Suche in Google Scholar PubMed PubMed Central

Black C.C., Solyman S.M., Eberlein L.C., Bemis D.A., Woron A. M. & Kania S.A. 2009. Identification of a predominant multilocus sequence type, pulsed-field gel electrophoresis cluster, and novel staphylococcal chromosomal cassette in clinical isolates of mecA-containing, methicillin-resistant Staphylococcus pseudintermedius. Vet. Microbiol. 139: 333-–338.10.1016/j.vetmic.2009.06.029Suche in Google Scholar PubMed

Bouchami O., Ben Hassen A., de Lencastre H. & Miragaia M. 2011. Molecular epidemiology of methicillin-resistant Staphylococcus hominis (MRSHo): low clonality and reservoirs of SCCmec structural elements. PLoS One 6: e21940.10.1371/journal.pone.0021940Suche in Google Scholar PubMed PubMed Central

Bouchami O., Ben Hassen A., de Lencastre H. & Miragaia M. 2012. High prevalence of mec complex C and ccrC is independent of SCCmec type V in Staphylococcus haemolyticus. Eur. J. Clin. Microbiol. Infect. Dis. 31: 605-–614.10.1007/s10096-011-1354-3Suche in Google Scholar PubMed

Boundy S., Safo M.K., Wang L., Musayev F.N., O’Farrell H.C., Rife J.P. & Archer G.L. 2013. Characterization of the Staphylococcus aureus rRNA methyltransferase encoded by orfX, the gene containing the staphylococcal chromosome cassette mec (SCCmec) insertion site. J. Biol. Chem. 288: 132-–140.10.1074/jbc.M112.385138Suche in Google Scholar

Chlebowicz M.A., Mašlaňová I., Kuntová L., Grundmann H., Pantůĉek R., Doskař J., van Dijl J.M. & Buist G. 2014. The staphylococcal cassette chromosome mec type V from Staphylococcus aureus ST398 is packaged into bacteriophage capsids. Int. J. Med. Microbiol. 304: 764-–774.10.1016/j.ijmm.2014.05.010Suche in Google Scholar

Chlebowicz M.A., Nganou K., Kozytska S., Arends J.P., Engelmann S., Grundmann H., Ohlsen K., van Dijl J.M. & Buist G. 2010. Recombination between ccrC genes in a type V (5C2&5) staphylococcal cassette chromosome mec (SCCmec) of Staphylococcus aureus ST398 leads to conversion from methicillin resistance to methicillin susceptibility in vivo. Antimicrob. Agents Chemother. 54: 783-–791.10.1128/AAC.00696-09Suche in Google Scholar

Cuny C., Layer F., Strommenger B. & Witte W. 2011. Rareoccurrence of methicillin-resistant Staphylococcus aureus CC130 with a novel mecA homologue in humans in Germany. PLoS One 6: e24360.10.1371/journal.pone.0024360Suche in Google Scholar

Darling A.E., Mau B. & Perna N.T. 2010. Progressive Mauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5: e11147.10.1371/journal.pone.0011147Suche in Google Scholar

Darriba D., Taboada G.L., Doallo R. & Posada D. 2012. jModel-Test 2: more models, new heuristics and parallel computing. Nat. Methods 9: 772.10.1038/nmeth.2109Suche in Google Scholar

Daum R.S., Ito T., Hiramatsu K., Hussain F., Mongkolrattanothai K., Jamklang M. & Boyle-Vavra S. 2002. A novel methicillin-resistance cassette in community-acquired methicillin-resistant Staphylococcus aureus isolates of diverse genetic backgrounds. J. Infect. Dis. 186: 1344-–1347.10.1086/344326Suche in Google Scholar

Lopes M.D.F.S., Ribeiro T., Abrantes M., Marques J.J.F., Tenreiro R. & Crespo M. T. 2005. Antimicrobial resistance profiles of dairy and clinical isolates and type strains of enterococci. Int. J. Food Microbiol. 103: 191-–198.10.1016/j.ijfoodmicro.2004.12.025Suche in Google Scholar

DeLeo F.R. & Chambers H.F. 2009. Reemergence of antibioticresistant Staphylococcus aureus in the genomics era. J. Clin. Invest. 119: 2464-–2474.10.1172/JCI38226Suche in Google Scholar

DeLeo F.R., Otto M., Kreiswirth B.N. & Chambers H.F. 2010. Community-associated meticillin-resistant Staphylococcus aureus. Lancet 375: 1557-–1568.10.1016/S0140-6736(09)61999-1Suche in Google Scholar

Descloux S., Rossano A. & Perreten V. 2008. Characterization of new staphylococcal cassette chromosome mec (SCCmec) and topoisomerase genes in fluoroquinolone- and methicillin-resistant Staphylococcus pseudintermedius. J. Clin. Microbiol. 46: 1818-–1823.10.1128/JCM.02255-07Suche in Google Scholar

Diep B.A., Gill S.R., Chang R.F., Phan T.H., Chen J.H., Davidson M.G., Lin F., Lin J., Carleton H.A., Mongodin E.F., Sensabaugh G.F. & Perdreau-Remington F. 2006. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367: 731-–739.10.1016/S0140-6736(06)68231-7Suche in Google Scholar

Donnio P.Y., Fevrier F., Bifani P., Dehem M., Kervegant C., Wilhelm N., Gautier-Lerestif A.L., Lafforgue N., Cormier M., Le Coustumier A. & MR-MSSA Study Group of the College de Bacteriologie-Virologie-Hygeine des Hopitaux de France. 2007. Molecular and epidemiological evidence for spread of multiresistant methicillin-susceptible Staphylococcus aureus strains in hospitals. Antimicrob. Agents Chemother. 51: 4342-–4350.10.1128/AAC.01414-06Suche in Google Scholar

Ender M., McCallum N., Adhikari R. & Berger-Bachi B. 2004. Fitness cost of SCCmec and methicillin resistance levels in Staphylococcus aureus. Antimicrob. Agents Chemother. 48: 2295-–2297.10.1128/AAC.48.6.2295-2297.2004Suche in Google Scholar

Enright M.C., Day N.P., Davies C.E., Peacock S.J. & Spratt B. G. 2000. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38: 1008-–1015.10.1128/JCM.38.3.1008-1015.2000Suche in Google Scholar

Enright M.C., Robinson D.A., Randle G., Feil E.J., Grundmann H. & Spratt B.G. 2002. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci. USA 99: 7687-–7692.10.1073/pnas.122108599Suche in Google Scholar

Fluit A.C., Carpaij N., Majoor E.A., Bonten M.J. & Willems R. J. 2013. Shared reservoir of ccrB gene sequences between coagulase-negative staphylococci and methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 68: 1707–1713.10.1093/jac/dkt121Suche in Google Scholar

Garcia-Alvarez L., Holden M.T.G., Lindsay H., Webb C.R., Brown D.F.J., Curran M.D., Walpole E., Brooks K., Pickard D.J., Teale C., Parkhill J., Bentley S.D., Edwards G.F., Girvan E.K., Kearns A.M., Pichon B., Hill R.L.R., Larsen A.R., Skov R.L., Peacock S.J., Maskell D.J. & Holmes M.A. 2011. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect. Dis. 11: 595–603.10.1016/S1473-3099(11)70126-8Suche in Google Scholar

Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W. & Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59: 307-–321.10.1093/sysbio/syq010Suche in Google Scholar PubMed

Guindon S. & Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696-–704.10.1080/10635150390235520Suche in Google Scholar PubMed

Hanssen A.M., Kjeldsen G. & Sollid J.U.E. 2003. Local variants of staphylococcal cassette chromosome mec in sporadic methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci: Evidence of horizontal gene transfer? Antimicrob. Agents Chemother. 48: 285-–296.10.1128/AAC.48.1.285-296.2004Suche in Google Scholar PubMed PubMed Central

Harrison E.M., Paterson G.K., Holden M.T., Ba X., Rolo J., Morgan F.J., Pichon B., Kearns A., Zadoks R.N., Peacock S.J., Parkhill J. & Holmes M.A. 2014. A novel hybrid SCCmec-mecC region in Staphylococcus sciuri. J. Antimicrob. Chemother. 69: 911-–918.10.1093/jac/dkt452Suche in Google Scholar PubMed PubMed Central

Harrison E.M., Paterson G.K., Holden M.T., Morgan F.J., Larsen A.R., Petersen A., Leroy S., De Vliegher S., Perreten V., Fox L.K., Lam T.J., Sampimon O.C., Zadoks R.N., Peacock S. J., Parkhill J. & Holmes M.A. 2013. A Staphylococcus xylosus isolate with a new mecC allotype. Antimicrob. Agents Chemother. 57: 1524-–1528.10.1128/AAC.01882-12Suche in Google Scholar PubMed PubMed Central

Hiramatsu K., Ito T., Tsubakishita S., Sasaki T., Takeuchi F., Morimoto Y., Katayama Y., Matsuo M., Kuwahara-Arai K., Hishinuma T. & Baba T. 2013. Genomic basis for methicillin resistance in Staphylococcus aureus. Infect. Chemother. 45: 117-–136.10.3947/ic.2013.45.2.117Suche in Google Scholar PubMed PubMed Central

Ito T., Katayama Y., Asada K., Mori N., Tsutsumimoto K., Tiensasitorn C. & Hiramatsu K. 2001. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 45: 1323–1336.10.1128/AAC.45.5.1323-1336.2001Suche in Google Scholar PubMed PubMed Central

Ito T., Ma X.X., Takeuchi F., Okuma K., Yuzawa H. & Hiramatsu K. 2004. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob. Agents Chemother. 48: 2637-–2651.10.1128/AAC.48.7.2637-2651.2004Suche in Google Scholar PubMed PubMed Central

IWG-SCC International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements. 2009. Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob. Agents Chemother. 53: 4961-–4967.10.1128/AAC.00579-09Suche in Google Scholar PubMed PubMed Central

Jevons M.P., Rolinson G.N. & Knox R. 1961. Celbenin-resistant staphylococci. Brit. Med. J. 1: 124-–125.10.1136/bmj.1.5219.124-aSuche in Google Scholar

Jolley K.A. & Maiden M.C.J. 2010. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11: 595.10.1186/1471-2105-11-595Suche in Google Scholar PubMed PubMed Central

Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30: 772-–780.10.1093/molbev/mst010Suche in Google Scholar PubMed PubMed Central

Kinnevey P.M., Shore A.C., Brennan G.I., Sullivan D.J., Ehricht R., Monecke S. & Coleman D.C. 2014. Extensive genetic diversity identified among sporadic methicillin-resistant Staphylococcus aureus isolates recovered in Irish hospitals between 2000 and 2012. Antimicrob. Agents Chemother. 58: 1907-–1917.10.1128/AAC.02653-13Suche in Google Scholar PubMed PubMed Central

Knight G.M., Budd E.L. & Lindsay J.A. 2013. Large mobile genetic elements carrying resistance genes that do not confer a fitness burden in healthcare-associated meticillin-resistant Staphylococcus aureus. Microbiology 159: 1661-–1672.10.1099/mic.0.068551-0Suche in Google Scholar PubMed

Knight G.M., Budd E.L., Whitney L., Thornley A., Al-Ghusein H., Planche T. & Lindsay J.A. 2012. Shift in dominant hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) clones over time. J. Antimicrob. Chemother. 67: 2514-–2522.10.1093/jac/dks245Suche in Google Scholar PubMed

Kuroda M., Yamashita A., Hirakawa H., Kumano M., Morikawa K., Higashide M., Maruyama A., Inose Y., Matoba K., Toh H., Kuhara S., Hattori M. & Ohta T. 2005. Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc. Natl. Acad. Sci. USA 102: 13272-–13277.10.1073/pnas.0502950102Suche in Google Scholar PubMed PubMed Central

Lee S.M., Ender M., Adhikari R., Smith J.M., Berger-Bachi B. & Cook G.M. 2007. Fitness cost of staphylococcal cassette chromosome mec in methicillin-resistant Staphylococcus aureus by way of continuous culture. Antimicrob. Agents Chemother. 51: 1497-–1499.10.1128/AAC.01239-06Suche in Google Scholar PubMed PubMed Central

Lina G., Durand G., Berchich C., Short B., Meugnier H., Vandenesch F., Etienne J. & Enright M.C. 2006. Staphylococcal chromosome cassette evolution in Staphylococcus aureus inferred from ccr gene complex sequence typing analysis. Clin. Microbiol. Infect. 12: 1175-–1184.10.1111/j.1469-0691.2006.01548.xSuche in Google Scholar PubMed

Maŝlaňová I., Doŝkaf J., Varga M., Kuntová L., Mužik J., Malúŝkovxá D., Růžičková V. & Pantůcek R. 2013. Bacte-riophages of Staphylococcus aureus efficiently package various bacterial genes and mobile genetic elements including SCCmec with different frequencies. Environ. Microbiol. Rep. 5: 66-–73.10.1111/j.1758-2229.2012.00378.xSuche in Google Scholar PubMed

Okuma K., Iwakawa K., Turnidge J.D., Grubb W.B., Bell J.M., O’Brien F G., Coombs G.W., Pearman J.W., Tenover F.C., Kapi M., Tiensasitorn C., Ito T. & Hiramatsu K. 2002. Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J. Clin. Microbiol. 40: 4289–4294.10.1128/JCM.40.11.4289-4294.2002Suche in Google Scholar PubMed PubMed Central

Oliveira D.C. & de Lencastre H. 2002. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 46: 2155-–2161.10.1128/AAC.46.7.2155-2161.2002Suche in Google Scholar PubMed PubMed Central

Otto M. 2013. Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection: staphylococcal commensal species such as Staphylococcus epidermidis are being recognized as important sources of genes promoting MRSA colonization and virulence. Bioessays 35: 4-–11.10.1002/bies.201200112Suche in Google Scholar PubMed PubMed Central

Park Y.K., Paik Y.H., Yoon J.W., Fox L.K., Hwang S.Y. & Park Y.H. 2013. Dissimilarity of ccrAB gene sequences between methicillin-resistant Staphylococcus epidermidis and methicillin-resistant Staphylococcus aureus among bovine isolates in Korea. J. Vet. Sci. 14: 299-–305.10.4142/jvs.2013.14.3.299Suche in Google Scholar PubMed PubMed Central

Perreten V., Chanchaithong P., Prapasarakul N., Rossano A., Blum S.E., Elad D. & Schwendener S. 2013. Novel pseudo-staphylococcal cassette chromosome mec element (psiSCCmec57395) in methicillin-resistant Staphylococcus pseudintermedius CC45. Antimicrob. Agents Chemother. 57: 5509-–5515.10.1128/AAC.00738-13Suche in Google Scholar PubMed PubMed Central

Price L.B., Stegger M., Hasman H., Aziz M., Larsen J., Andersen P.S., Pearson T., Waters A.E., Foster J.T., Schupp J., Gillece J., Driebe E., Liu C.M., Springer B., Zdovc I., Battisti A., Franco A., Zmudzki J., Schwarz S., Butaye P., Jouy E., Pomba C., Porrero M.C., Ruimy R., Smith T.C., Robinson D.A., Weese J.S., Arriola C.S., Yu F., Laurent F., Keim P., Skov R. & Aarestrup F.M. 2012. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. MBio 3: e00305-11.10.1128/mBio.00305-11Suche in Google Scholar PubMed PubMed Central

Queck S.Y., Khan B.A., Wang R., Bach T.H., Kretschmer D., Chen L., Kreiswirth B.N., Peschel A., DeLeo F.R. & Otto M. 2009. Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA. PLoS Pathog. 5: e1000533.10.1371/journal.ppat.1000533Suche in Google Scholar PubMed PubMed Central

Robinson D.A. & Enright M.C. 2003. Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 47: 3926-–3934.10.1128/AAC.47.12.3926-3934.2003Suche in Google Scholar PubMed PubMed Central

Rolo J., de Lencastre H. & Miragaia M. 2012. Strategies of adaptation of Staphylococcus epidermidis to hospital and community: amplification and diversification of SCCmec. J. Antimicrob. Chemother. 67: 1333-–1341.10.1093/jac/dks068Suche in Google Scholar PubMed

Rolo J., de Lencastre H. & Miragaia M. 2014. High frequency and diversity of cassette chromosome recombinases (ccr) in methicillin-susceptible Staphylococcus sciuri. J. Antimicrob. Chemother. 69: 1461-–1469.10.1093/jac/dku028Suche in Google Scholar PubMed

Ronquist F. & Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-–1574.10.1093/bioinformatics/btg180Suche in Google Scholar PubMed

Scharn C.R., Tenover F.C. & Goering R.V. 2013. Transduction of staphylococcal cassette chromosome mec elements between strains of Staphylococcus aureus. Antimicrob. Agents Chemother. 57: 5233-–5238.10.1128/AAC.01058-13Suche in Google Scholar PubMed PubMed Central

Shore A.C. & Coleman D.C. 2013. Staphylococcal cassette chromosome mec: recent advances and new insights. Int. J. Med. Microbiol. 303: 350-–359.10.1016/j.ijmm.2013.02.002Suche in Google Scholar PubMed

Stamatakis A., Blagojevic F., Nikolopoulos D.S. & Antonopoulos C. D. 2007. Exploring new search algorithms and hardware for phylogenetics: RAxML meets the IBM cell. J. VLSI Signal Processing 48: 271-–286.10.1007/s11265-007-0067-4Suche in Google Scholar

Tsubakishita S., Kuwahara-Arai K., Baba T. & Hiramatsu K. 2010a. Staphylococcal cassette chromosome mec-like element in Macrococcus caseolyticus. Antimicrob. Agents Chemother. 54: 1469-–1475.10.1128/AAC.00575-09Suche in Google Scholar

Tsubakishita S., Kuwahara-Arai K., Sasaki T. & Hiramatsu K. 2010b. Origin and molecular evolution of the determinant of methicillin resistance in staphylococci. Antimicrob. Agents Chemother. 54: 4352-–4359.10.1128/AAC.00356-10Suche in Google Scholar

Udo E.E., Pearman J.W. & Grubb W.B. 1993. Genetic analysis of community isolates of methicillin-resistant Staphylococcus aureus in Western Australia. J. Hosp. Infect. 25: 97-–108.10.1016/0195-6701(93)90100-ESuche in Google Scholar

Urushibara N., Paul S.K., Hossain M.A., Kawaguchiya M. & Kobayashi N. 2011. Analysis of staphylococcal cassette chromosome mec in Staphylococcus haemolyticus and Staphylococcus sciuri: identification of a novel ccr gene complex with a newly identified ccrA allotype (ccrA7). Microb. Drug Resist. 17: 291-–297.10.1089/mdr.2010.0144Suche in Google Scholar PubMed

Vanderhaeghen W., Vandendriessche S., Crombe F., Dispas M., Denis O., Hermans K., Haesebrouck F. & Butaye P. 2012. Species and staphylococcal cassette chromosome mec (SCCmec) diversity among methicillin-resistant non Staphylococcus aureus staphylococci isolated from pigs. Vet. Microbiol. 158: 123-–128.10.1016/j.vetmic.2012.01.020Suche in Google Scholar PubMed

Verkade E. & Kluytmans J. 2014. Livestock-associated Staphylococcus aureus CC398: animal reservoirs and human infections. Infect. Genet. Evol. 21: 523-–530.10.1016/j.meegid.2013.02.013Suche in Google Scholar PubMed

Voss A., Loeffen F., Bakker J., Klaassen C. & Wulf M. 2005. Methicillin-resistant Staphylococcus aureus in pig farming. Emerg. Infect. Dis. 11: 1965-–1966.10.3201/eid1112.050428Suche in Google Scholar PubMed PubMed Central

Wisplinghoff H., Rosato A.E., Enright M.C., Noto M., Craig W. & Archer G.L. 2003. Related clones containing SCCmec type IV predominate among clinically significant Staphylococcus epidermidis isolates. Antimicrob. Agents Chemother. 47: 3574-–3579.10.1128/AAC.47.11.3574-3579.2003Suche in Google Scholar PubMed PubMed Central

Wu Z., Li F., Liu D., Xue H. & Zhao X. 2015. Novel type XII staphylococcal cassette chromosome mec harboring a new cassette chromosome recombinase, CcrC2. Antimicrob. Agents Chemother. 59: 7597-–7601.10.1128/AAC.01692-15Suche in Google Scholar PubMed PubMed Central

Zong Z., Peng C. & Lu X. 2011. Diversity of SCCmec elements in methicillin-resistant coagulase-negative staphylococci clinical isolates. PLoS One 6: e20191.10.1371/journal.pone.0020191Suche in Google Scholar PubMed PubMed Central

Received: 2016-8-5
Accepted: 2016-11-19
Published Online: 2016-12-25
Published in Print: 2016-11-1

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Cellular and Molecular Biology
  2. The evolutionary pathway of the staphylococcal cassette chromosome element
  3. Cellular and Molecular Biology
  4. Detection of the antibacterial effect of Chaetomium cochliodes Palliser CCM F-232 based on agar plugs and unprocessed fungal substances from cultivation media
  5. Botany
  6. Identification and molecular characterization of one novel 1Sl-encoded s-type low molecular weight glutenin B-subunit from 1Sl(1B) substitution line of wheat variety Chinese Spring (Triticum aestivum)
  7. Botany
  8. Bioinformatic analysis of Arabidopsis reverse transcriptases with a zinc-finger domain
  9. Botany
  10. Distinct expression patterns of the GDP dissociation inhibitor protein gene (OsRhoGDI2) from Oryza sativa during development and abiotic stresses
  11. Botany
  12. An application of genetics-chemicals constituents to the relatedness of three Euphorbia species
  13. Zoology
  14. Centipede (Chilopoda) richness, diversity and community structure in the forest-steppe nature reserve “Bielinek” on the Odra River (NW Poland, Central Europe)
  15. Zoology
  16. Genetic differentiating Aphis fabae and Aphis craccivora (Hemiptera: Sternorranycha: Aphididae) populations in Egypt using mitochondrial COI
  17. Zoology
  18. A faunistic study on Carabidae and Scarabaeidae in alfalfa fields from Central Greece
  19. Zoology
  20. Comparison of Macroheterocera assemblages of four forests in the Bereg Plain (Hungary, Ukraine)
  21. Zoology
  22. Late flooding combined with warm autumn – potential possibility for prolongation of transmission of mosquito-borne diseases
  23. Zoology
  24. Temperature and precipitation effects on breeding productivity of some passerines – a multivariate analysis of constant effort mist-netting data
  25. Cellular and Molecular Biology
  26. The direct action of hyaluronic acid on human U-937 and HL-60 cells – modification of native and model membranes
Heruntergeladen am 10.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0156/html?lang=de
Button zum nach oben scrollen