Startseite The direct action of hyaluronic acid on human U-937 and HL-60 cells – modification of native and model membranes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The direct action of hyaluronic acid on human U-937 and HL-60 cells – modification of native and model membranes

  • Anna Barbasz , Barbara Kreczmer , Barbara Dyba , Maria Filek und Elżbieta Rudolphi-Skórska EMAIL logo
Veröffentlicht/Copyright: 25. Dezember 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 71 Heft 11

Abstract

The aim of the study was to investigate the effect of application of exogenous hyaluronic acid (HA) of various molecular weights on the cells of human immune system. Two cell lines HL-60 and U-937 with various ability to differentiation were chosen. HL-60 cells were differentiated to macrophages and granulocytes, whereas U-937 only to macrophages. For all investigated cell systems the most cytotoxic effect, indicated as a decrease of cell viability, was found at HA dose equal to 200 mg/L. However, greater effect was observed for differentiated cells and at longer exposure to HA. The possibility of HA interaction with both specific receptors and membrane lipids was tested by determination of biotin-labelled HA binding to cell surface and analysis of physicochemical parameters of model membranes.

Abbreviations

A

area per lipid molecule

Alim

limiting area per molecule representing maximal density of a layer being characteristic for each lipid

Cs1

static compression modulus

DMSO

dimethyl sulfoxide

DOPA

1,2-sn-glycero-3-phosphate 18:1

DOPC

1,2-dioleoyl-sn-glycero-3-phosphocholine 18:1

DOPG

dioleoyl-sn-glycero-3-phospho-(1’-rac-glycerol) 18:1

DPPC

1,2-dipalmitoyl-sn-glycero-3-phosphocholine 16:0

ECM

extracellular matrix

ELLSA

enzyme-linked ligand sorbent assay

FBS

foetal bovine serum

GAG

glycosaminoglycans

HA

sodium hyaluronate, hyaluronic acid

HA-Bt

hyaluronan biotin sodium salt

HALMW

low molecular weight hyaluronic acid

iNOS

nitric oxide synthase inhibitor

MTT tetrazolium salt

methylthiazolyldiphenyl-tetrazolium bromide

PA

phosphatidic acid

PBS

phosphate buffered saline

PC

phospatidylcholine

PG

phosphatidylglycerol

PMA

12-myristate-13-acetate

SA-HRP

streptavidin conjugated to horseradish peroxidase

TMB

3,3’,5,5’-tetramethylbenzidine

π

surface pressure

πcoll

pressure at which layer collapse

References

Balazs E.A. 2004. Viscoelastic Properties of Hyaluronan and Its Therapeutic Use. Chemistry and Biology of Hyaluronan. 1st Ed., Elsevier, Amsterdam.Suche in Google Scholar

Barbasz A. & Oćwieja M. 2016. Gold nanoparticles and ions – friends or foes? As they are seen by human cells U-937 and HL-60. J. Exp. Nanosci. 11: 564–580.10.1080/17458080.2015.1096024Suche in Google Scholar

Barbasz A., Oćwieja M. & Barbasz J. 2015. Cytotoxic activity of highly purified silver nanoparticles sol against cells of human immune system. Appl. Biochem. Biotechnol. 176: 817–834.10.1007/s12010-015-1613-3Suche in Google Scholar

Barnes G.T. & Gentle I.R. 2005. Interfacial Science. 1st Ed., Oxford University, New York.Suche in Google Scholar

Brown M.B. & Jones S.A. 2005. Hyaluronic acid: a unique topical vehicle for the localized delivery of drugs to the skin. J. Eur. Acad. Dermatol. Venereol. 19: 308–318.10.1111/j.1468-3083.2004.01180.xSuche in Google Scholar

Chen F., Kuhn D.C., Sun S.C., Gaydos L.J. & Demers L.M. 1995. Dependence and reversal of nitric oxide production on NF-κ-β in silica and lipopolysaccharide induced macrophages. Biochem. Biophys. Res. Commun. 214: 839–846.10.1006/bbrc.1995.2363Suche in Google Scholar

Coleman J.W. 2002. Nitric oxide: a regulator of mast cell activation and mast cell-mediated inflammation. Clin. Exp. Immunol. 129: 4–10.10.1046/j.1365-2249.2002.01918.xSuche in Google Scholar

Collins S.J. 1987. The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood 70: 1233–1244.Suche in Google Scholar

DeAngelis P.L. 2002. Evolution of glycosaminoglycans and their glycosyltransferases: implications for the extracellular matrices of animals and the capsules of pathogenic bacteria. Anat.Rec. 268: 317–326.10.1002/ar.10163Suche in Google Scholar

Esposito E., Menegatti E. & Cortesi R. 2005. Hyaluronan-based microspheres as tools for drug delivery: a comparative study. Int. J. Pharm. 288: 35–49.10.1016/j.ijpharm.2004.09.001Suche in Google Scholar

Filek M., Paluch M. & Waligóra B. 1982. Electrical-properties of the monolayers of para-phenol derivatives. J. Colloid Interface Sci. 89: 166–169.10.1016/0021-9797(82)90130-8Suche in Google Scholar

Fraser J.R., Laurent T.C. & Laurent U.B. 1997. Hyaluronan: its nature, distribution, functions and turnover. J. Intern. Med. 242: 27–33.10.1046/j.1365-2796.1997.00170.xSuche in Google Scholar PubMed

Głowacki A., Koźma E.M., Olczyk K. & Kucharz E.J. 1995. Glikozaminoglikany – struktura i funkcja. Post. Biochem. 42: 139–148.Suche in Google Scholar

Gzyl B., Filek M. & Dudek A. 2004. Influence of phytohormones on polar and hydrophobic parts of mixed phospholipid monolayers at water/air interface. J Colloid Interface Sci. 269: 153–157.10.1016/j.jcis.2003.09.010Suche in Google Scholar PubMed

Gzyl-Malcher B., Filek M. & Brezesiński G. 2011. Mixed DPPC/DPTAP monolayer at the air/water interface: influence of indolilo-3-aceic acid and selenate ions on the monolayer morphology. Langmuir 27: 10886–10893.10.1021/la201765uSuche in Google Scholar

Harris P. & Ralph P. 1985. Human leukemic models of myelomonocytic development: a review of the HL-60 and U-937 cell lines. J. Leukocyte Biol.37: 407–422.10.1002/jlb.37.4.407Suche in Google Scholar

Hsu F., Ma Z., Wohltmann M., Bohrer A., Nowatzke W., Ramanadham S. & Turk J. 2000. Electrospray ionization/mass spectrometric analyses of human promonocytic U-937 cell glycerolipids and evidence that differentiation is associated with membrane lipid composition changes that facilitate phospholipase A2 activation. J. Biol. Chem. 275: 16579–16589.10.1074/jbc.M908342199Suche in Google Scholar

Kikuchi S., Griffin C.T., Wang S.S. & Bissell D.M. 2005. Role of CD44 in epithelial wound rep air: migration of rat hepatic stellate cells utilizes hyaluronic acid and CD44v6. J. Biol. Chem. 280: 15398–15404.10.1074/jbc.M414048200Suche in Google Scholar

Kogan G., Soltés L., Stern R. & Gemeiner P. 2007. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 29: 17–25.10.1007/s10529-006-9219-zSuche in Google Scholar

Leach J.B. & Schmidt C.E. 2004. Hyaluronan, pp. 779–789. In: Wnek G.E. & Bowlin G.L. (eds), Encyclopedia of Biomaterials and Biomedical Engineering, Marcel Dekker, New York.Suche in Google Scholar

Liu J., Bi G., Wen P.E., Yang W., Ren X., Tang T. & Jiang G. 2007. Down-regulation of CD44 contributes to the differentiation of HL-60 cells induced by ATRA or HMBA. Cell. Mol. Immunol. 4: 59–63.Suche in Google Scholar

Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55–63.10.1016/0022-1759(83)90303-4Suche in Google Scholar

Murao S.I., Gemmell M.A., Callaham M.F., Anderson N.L. & Huberman E. 1983. Control of macrophage cell differentiation in human promyelocytic HL-60 leukemia cells by 1, 25-dihydroxyvitamin D3 and phorbol-12-myristate-13-acetate. Cancer Res. 43: 4989–4996.Suche in Google Scholar

Olins A.L., Herrmann H., Lichter P. & Olins D.E. 2000. Retinoic acid differentiation of HL-60 cells promotes cytoskeletal polarization. Exp. Cell. Res. 254: 130–142.10.1006/excr.1999.4727Suche in Google Scholar PubMed

Price R.D., Berry M.G. & Navsaria H.A. 2007. Hyaluronic acid: the scientific and clinical evidence. J. Plast. Reconstr. Aesthet. Surg. 60: 1110–1119.10.1016/j.bjps.2007.03.005Suche in Google Scholar PubMed

Prince C.W. 2004. Roles of hyaluronan in bone resorption. BMC Musculoskelet. Disord. 5: 12.10.1186/1471-2474-5-12Suche in Google Scholar PubMed PubMed Central

Ralph P., Moore M.A. & Nilsson K. 1976. Lysozyme synthesis by established human and murine histiocytic lymphoma cell lines. J. Exp. Med. 143: 1528–1533.10.1084/jem.143.6.1528Suche in Google Scholar PubMed PubMed Central

Rudolphi-Skórska E., Filek M. & Zembala M. 2014a. Physicochemical aspects of reaction of ozone with galactolipid and galactolipid-tocopherol layers. J. Membrane Biol. 247: 639–649.10.1007/s00232-014-9681-9Suche in Google Scholar PubMed PubMed Central

Rudolphi-Skórska E., Filek M. & Zembala M. 2016. a-Tocopherol/ br gallic acid cooperation in the protection of galactolipids against ozone-induced oxidation. J. Membrane Biol. 249: 87–95.10.1007/s00232-015-9851-4Suche in Google Scholar PubMed PubMed Central

Rudolphi-Skórska E. & Sieprawska A. 2016. Physicochemical techniques in description of interactions in model and native plant membranes under stressful conditions and in physiological processes. Acta Physiol. Plant. 38: 22.10.1007/s11738-015-2034-1Suche in Google Scholar

Rudolphi-Skórska E., Zembala M. & Filek M. 2014b. Mechanical and electrokinetic effect of polyamines/phospholipid interaction in model membranes. J Membrane Biol. 247: 81–92.10.1007/s00232-013-9614-zSuche in Google Scholar PubMed PubMed Central

Scheibner K.A., Lutz M.A., Boodoo S., Fenton M.J., Powell J.D. & Horton M.R. 2006. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J. Immunol. 177: 1272–1281.10.4049/jimmunol.177.2.1272Suche in Google Scholar PubMed

Scott J.E. 1992. Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J. 6: 2639–2645.10.1096/fasebj.6.9.1612287Suche in Google Scholar

Selvin M., Kumar S. & Gaffney J. 2002. Angiogenic oligosaccharides of hyaluronan induce multiple signaling pathways affecting vascular endothelial cell mitogenic and wound healing responses. J. Biol. Chem. 277: 41046–41059.10.1074/jbc.M109443200Suche in Google Scholar PubMed

Tammi M.I., Day A.J. & Turley E.A. 2002. Hyaluronan and homeostasis: a balancing act. J. Biol. Chem. 277: 4581–4584.10.1074/jbc.R100037200Suche in Google Scholar PubMed

Toole B.P. 2004. Hyaluronan: from extracellular glue to pericellular cue. Nature Rev. Cancer 4: 528–539.10.1038/nrc1391Suche in Google Scholar PubMed

Weindl G., Schaller M., Schäfer-Korting M. & Korting H.C. 2004. Hyaluronic acid in the treatment and prevention of skin diseases: molecular, biological, pharmaceutical and clinical aspects. Skin Pharmacol. Physiol. 17: 207–213.10.1159/000080213Suche in Google Scholar PubMed

Wnętrzak A., Lipiec E., Lątka K., Kwiatek W. & Dynarowicz-Lątka P. 2014. Affinity of alkylphosphocholines to biological membrane of prostate cancer: studies in natural and model systems. J. Membr. Biol. 247: 581–589.10.1007/s00232-014-9674-8Suche in Google Scholar PubMed PubMed Central

Yang S.Z., Kan H.L. & Zhang T.M. 2010. Application of hyaluronic acid in beauty and cosmetic. J. Food Drug 7: 017.Suche in Google Scholar

Yasuda T. 2010. Hyaluronan inhibits prostaglandin E2 production via CD44 in U937 human macrophages. Tohoku J. Exp.Med. 220: 229–235.10.1620/tjem.220.229Suche in Google Scholar PubMed

Received: 2016-6-3
Accepted: 2016-11-22
Published Online: 2016-12-25
Published in Print: 2016-11-1

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Cellular and Molecular Biology
  2. The evolutionary pathway of the staphylococcal cassette chromosome element
  3. Cellular and Molecular Biology
  4. Detection of the antibacterial effect of Chaetomium cochliodes Palliser CCM F-232 based on agar plugs and unprocessed fungal substances from cultivation media
  5. Botany
  6. Identification and molecular characterization of one novel 1Sl-encoded s-type low molecular weight glutenin B-subunit from 1Sl(1B) substitution line of wheat variety Chinese Spring (Triticum aestivum)
  7. Botany
  8. Bioinformatic analysis of Arabidopsis reverse transcriptases with a zinc-finger domain
  9. Botany
  10. Distinct expression patterns of the GDP dissociation inhibitor protein gene (OsRhoGDI2) from Oryza sativa during development and abiotic stresses
  11. Botany
  12. An application of genetics-chemicals constituents to the relatedness of three Euphorbia species
  13. Zoology
  14. Centipede (Chilopoda) richness, diversity and community structure in the forest-steppe nature reserve “Bielinek” on the Odra River (NW Poland, Central Europe)
  15. Zoology
  16. Genetic differentiating Aphis fabae and Aphis craccivora (Hemiptera: Sternorranycha: Aphididae) populations in Egypt using mitochondrial COI
  17. Zoology
  18. A faunistic study on Carabidae and Scarabaeidae in alfalfa fields from Central Greece
  19. Zoology
  20. Comparison of Macroheterocera assemblages of four forests in the Bereg Plain (Hungary, Ukraine)
  21. Zoology
  22. Late flooding combined with warm autumn – potential possibility for prolongation of transmission of mosquito-borne diseases
  23. Zoology
  24. Temperature and precipitation effects on breeding productivity of some passerines – a multivariate analysis of constant effort mist-netting data
  25. Cellular and Molecular Biology
  26. The direct action of hyaluronic acid on human U-937 and HL-60 cells – modification of native and model membranes
Heruntergeladen am 10.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0157/html
Button zum nach oben scrollen