Abstract
Aphis craccivora and Aphis fabae were found to infest broad bean in Egypt. Aphis craccivora was found to be more dominant than A. fabae; A. craccivora was collected from nine locations that represented different agroecosystems in Egypt. At the same time, A. fabae was found in one location only. Single Nucleotide Polymorphisms (SNPs) in mtDNA Cytochrome c oxidase subunit I (COI) were used to differentiate A. fabae and geographically related populations of A. craccivora in Egypt. For this purpose COI primers were designed and registered in GenBank. The primers were successful in detecting genetic variations between both related Aphis species as well as among different geographic populations of A. craccivora. Fourteen SNPs were found to differ among two biotypes of A. craccivora in the Nile Delta and Upper Egypt, probably due to environmental variations in the two different ecosystems.
References
Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Molec. Biol. 215 (3): 403–410. 10.1016/S0022-2836(05)80360-2Suche in Google Scholar
Ansari A.K., Van Emden H.F. & Singh S.R. 1996. Differential reaction of two biotypes of cowpea aphid, Aphis craccivora(Koch) to cowpea, Vigna unguiculata (L) walp. UNISWA Research Journal of Agriculture. Science and Technology 1: 28–34.Suche in Google Scholar
Béji B., Bouktila D., Mezghani-Khemakhem M., Bouhachem-Boukhris S., Makni M. & Makni H. 2013. Genetic structure of Aphis fabae Scopoli (Hemiptera, Aphididae) in Tunisia, inferred from RAPD markers. Roman. Agricult. Res. 30: 307–315.Suche in Google Scholar
Blackman R.L. & Eastop V.F. 2000. Aphids on the World's Crops. An Identification and Information Guide. 2nd ed. John Wiley & Sons Ltd., Chichester, 476 pp. ISBN: 978-0-471-85191-2Suche in Google Scholar
Brady C.M., Asplen M.K., Desneux N., Heimpel G.E., Hopper K.R., Linnen C.R., Oliver K.M., Wulff J.A. & White J.A. 2014. Worldwide populations of the aphid Aphiscraccivora are infected with diverse facultative bacterial symbionts. Microb. Ecol. 67 (1): 195–204. 10.1007/s00248-013-0314-0Suche in Google Scholar PubMed
Coeur D’acier A., Jousselin E., Martin J.F. & Rasplus J.Y. 2007. Phylogeny of the genus Aphis Linnaeus 1758 (Homoptera: Aphididae) inferred from mitochondrial DNA sequences. Mol. Phylogen. Evol. 42 (3): 598–611. 10.1016/j.ympev.2006.10.006Suche in Google Scholar PubMed
Favret C. 2013. Aphid Species File. Version 5.0/5.0. Available: http://aphid.speciesfile.org (accessed 15.09.2013)Suche in Google Scholar
Fenton B., Woodford J.A.T. & Malloch G. 1998. Analysis of clonal diversity of the peach-potato aphid, Myzus persicae(Sulzer), in Scotland, UK and evidence for the existence of a predominant clone. Mol. Ecol. 7 (11): 1475–1487. 10.1046/j.1365-294x. 1998.00479.xSuche in Google Scholar
Foottit R.G., Halbert S.E., Miller G.L., Maw E. & Russell L.M. 2006. Adventive aphids (Hemiptera: Aphididae) of America North of Mexico. Proc. Entomol. Soc. Wash. 108 (3): 583–610.Suche in Google Scholar
Foottit R.G., Lowery D.T., Maw H.E.L., Smirle M.J. & Lushai G. 2009. Identification, distribution and molecular characterization of the apple aphids Aphis pomi and Aphis spiraecola(Hemiptera: Aphididae: Aphidinae). Can. Entomol. 141 (5): 478–495. https://doi.org/10.4039/n09-037Suche in Google Scholar
Foottit R.G., Maw H.E.L., von Dohlen C.D. & Herbert P.D.N. 2008. Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes. Mol. Ecol. Resour. 8 (6): 1189–1201. 10.1111/j.1755-0998.2008.02297.x.Suche in Google Scholar PubMed
Gurney T., Elbel R., Ratnapradipa D. & Brossard R. 2000. Introduction to the molecular phylogeny of insects. Chapter 3, pp. 63-79. In: Karcher, S.J. (ed.), Tested Studies for Laboratory Teaching. Vol. 21. Proceedings of the 21st Workshop/Conference of the Association for Biology Laboratory Education (ABLE), June 1-5 1999, 509 pp. ISBN-10: 1890444030, ISBN-13: 9781890444037Suche in Google Scholar
Heie O.E. 1986. The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. Vol. III. Family Aphididae: subfamily Pte-rocommatinae and tribe Aphidini of subfamily Aphidinae. Fauna Entomol. Scand. 17: 1–314. ISBN-13: 9789004080881Suche in Google Scholar
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Meintjes P. & Drummond A. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28 (12): 1647–1649. 10.1093/bioinformatics/bts199Suche in Google Scholar PubMed PubMed Central
Lee W., Kim H., Lim J., Choi H.R., Kim Y., Kim Y.S., Ji J.Y., Foottit R.G. & Lee S. 2011. Barcoding aphids (Hemiptera: Aphididae) of the Korean Peninsula: updating the global data set. Mol. Ecol. Resour. 11 (1): 32–37. 10.1111/j.1755-0998.2010.02877.xSuche in Google Scholar PubMed
Loxdale H.D. & Lushai G. 1998. Molecular markers in entomology. Bull. Entomol. Res. 88 (6): 577–600. https://doi.org/10.1017/S0007485300054250Suche in Google Scholar
Messing R.H., Tremblay M.N., Mondor E.B., Foottit R.G. & Pike K.S. 2007. Invasive aphids attack native Hawaiian plants. Biol. Invasions 9 (5): 601–607. 10.1007/s10530-006-9045-1Suche in Google Scholar
Miller N.J., Birley A.J., Overall A.D.J. & Tatchell G.M. 2003. Population genetic structure of the lettuce root aphid, Pemphigus bursarius (L.), in relation to geographic distance. Geneflow and host plant usage. Heredity 91 (3): 217–223. 10.1038/sj.hdy.6800331Suche in Google Scholar
Pearson W. & Lipman D. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85 (8): 2444–2448. PMID: 316277010.1073/pnas.85.8.2444Suche in Google Scholar
Ratnasingham S. & Hebert P.D.N. 2007. BOLD: The Barcode of Life Data System (www.barcodinglife.org). Mol. Ecol. Notes 7: 355–364. 10.1111/j.1471-8286.2006.01678.xSuche in Google Scholar
Remaudière G. & Remaudièr Catalogue des AphididaeeM. 1997. Catalogue des Aphididae du monde. Homoptera Aphidoidea. Techniques et Pratiques. INRA, Paris, 473 pp.ISBN: 2-7380-0714-7Suche in Google Scholar
Rogers S.O. & Bendich. 1985. Extraction of DNA from milligram amounts of fresh, herbariurp and mummified plant tissues. Plant Mol. Biol. 5 (2): 69–76. 10.1007/BF00020088Suche in Google Scholar
Rozen S. & Skaletsky H. 1999. Primer3 on the WWW for general users and for biologist programmers, pp. 365-386. In: Misener S. & Krawetz S.A. (eds), Bioinformatics Methods and Protocols, Part 3., Series: Meth. Mol. Biol. Vol. 132. 10.1385/1-59259-192-2:365, 490 pp. ISBN: 978-0-89603-732-8Suche in Google Scholar
Sambrook J. & Russell D.W. 2001. Molecular Cloning: A Laboratory Manual, 3rd ed. Vols. 1, 2, 3. Cold Spring Harbor Laboratory Press, New York, 2100 pp. ISBN-10: 0-87969-577-3, ISBN-13: 978-0-87969-577-4Suche in Google Scholar
Sanger F. & Coulson A.R. 1975. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94 (3): 441–448. 10.1016/0022-2836(75)90213-2Suche in Google Scholar
Shufran K.A. & Puterka G.J. 2011. DNA barcoding to identify all life stages of holocyclic cereal aphids (Hemiptera: Aphididae) on wheat and other poaceae. Ann. Entomol. Soc. Am. 104 (1): 39–42. 10.1603/AN10129Suche in Google Scholar
Sloane M.A., Sunnucks P., Wilson A.C.C. & Hales D.F. 2001. Microsatellite isolation, linkage group identification and de-termination of recombination frequency in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Genet. Res. 77 (3): 251–260. https://doi.org/10.1017/ S0016672301005018Suche in Google Scholar
Smith M.A., Rodriguez J.J., Whitfield J.B., Deans A.R., Janzen D.H., Hallwachs W. & Hebert P.D.N. 2008. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proc. Natl. Acad. Sci. USA 105 (34): 12359–12364. 10.1073/pnas.0805319105Suche in Google Scholar PubMed PubMed Central
Sreejith K. & Sebastian C.D. 2014. Phylogenetic analysis and sequencing of the mitochondrial cytochrome oxidase sub unit I (COI) of White backed plant hopper, Sogatella furcifera (Horvath). Int. Res. J. Pharm. 5 (12): 887–890. 10.7897/2230-8407.0512180Suche in Google Scholar
Stamatakis A. 2014. RAxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics. 30 (9): 1312–1313. 10.1093/bioinformatics/btu033.Suche in Google Scholar
Stroyan H.L.G. 1984. Aphids – Pterocommatinae and Aphidinae (Aphidini). Handbooks for the Identification of British Insects Vol. 2, 232 pp. ISBN-10: 0901546623, ISBN-13: 978–0901546623Suche in Google Scholar
Valenzuela I., Hoffmann A.A., Malipatil M.B., Ridland P.M. & Weeks A.R. 2007. Identification of aphid species (Hemiptera: Aphididae: Aphidinae) using a rapid polymerase chain reaction restriction fragment length polymorphism method based on the cytochrome oxidase subunit I gene. Austral. J. Entomol. 46 (4): 305–312. 10.1111/j.1440-6055.2007.00615.xSuche in Google Scholar
Vega F.E., Davis R.E., Barbosa P., Dally E.L., Purcell A.H. & Lee I.M. 1993. Detection of a plant pathogen in a nonvector insect species by the polymerase chain reaction. Phytopathology 83 (6): 621–624. 10.1094/Phyto-83-621Suche in Google Scholar
Wang J.F. & Qiao G.X. 2009. DNA barcoding of genus ToxopteraKoch (Hemiptera: Aphididae): identification and molecular phylogeny inferred from mitochondrial COI sequences. Insect Sci. 16 (6): 475–484. 10.1111/j.1744-7917.2009.01270.xSuche in Google Scholar
Xu Z., Chen J. & Cheng D.F.A. 2011. Genetic variation among the geographic population of the grain aphid, Sitobion avenae(Hemiptera: Aphididae) in China inferred from mitochondrial COI gene sequence. J. Integr. Agricult. 10 (7): 1041–1048. 10.1016/S1671-2927(11)60092-8Suche in Google Scholar
Zhang H.H., Huang X.L., Jiang L.Y., Qiao G.X. & Zheng Z.M. 2010. Subspecies differentiation of Aphis fabae Scopoli (Hemiptera: Aphididae) based on morphological and molecular data. Acta Zootaxonomica Sinica 35 (3): 537–545.Suche in Google Scholar
Zhang G.X. & Zhong T.S. 1981. Studies on Chinese Aphis craccivora complex with descriptions of two new species and two new subspecies. Sinozoologia 1: 39–43.Suche in Google Scholar
Zou C., Yang X., Chen X. & Li Y. 2000. Repeat sequence primer-PCR study on DNA polymorphism of geographic populations of cotton aphid, Aphis gossypii, in China. Entomol. Sin. 7 (4): 315–321.Suche in Google Scholar
© 2016 Institute of Zoology, Slovak Academy of Sciences
Artikel in diesem Heft
- Cellular and Molecular Biology
- The evolutionary pathway of the staphylococcal cassette chromosome element
- Cellular and Molecular Biology
- Detection of the antibacterial effect of Chaetomium cochliodes Palliser CCM F-232 based on agar plugs and unprocessed fungal substances from cultivation media
- Botany
- Identification and molecular characterization of one novel 1Sl-encoded s-type low molecular weight glutenin B-subunit from 1Sl(1B) substitution line of wheat variety Chinese Spring (Triticum aestivum)
- Botany
- Bioinformatic analysis of Arabidopsis reverse transcriptases with a zinc-finger domain
- Botany
- Distinct expression patterns of the GDP dissociation inhibitor protein gene (OsRhoGDI2) from Oryza sativa during development and abiotic stresses
- Botany
- An application of genetics-chemicals constituents to the relatedness of three Euphorbia species
- Zoology
- Centipede (Chilopoda) richness, diversity and community structure in the forest-steppe nature reserve “Bielinek” on the Odra River (NW Poland, Central Europe)
- Zoology
- Genetic differentiating Aphis fabae and Aphis craccivora (Hemiptera: Sternorranycha: Aphididae) populations in Egypt using mitochondrial COI
- Zoology
- A faunistic study on Carabidae and Scarabaeidae in alfalfa fields from Central Greece
- Zoology
- Comparison of Macroheterocera assemblages of four forests in the Bereg Plain (Hungary, Ukraine)
- Zoology
- Late flooding combined with warm autumn – potential possibility for prolongation of transmission of mosquito-borne diseases
- Zoology
- Temperature and precipitation effects on breeding productivity of some passerines – a multivariate analysis of constant effort mist-netting data
- Cellular and Molecular Biology
- The direct action of hyaluronic acid on human U-937 and HL-60 cells – modification of native and model membranes
Artikel in diesem Heft
- Cellular and Molecular Biology
- The evolutionary pathway of the staphylococcal cassette chromosome element
- Cellular and Molecular Biology
- Detection of the antibacterial effect of Chaetomium cochliodes Palliser CCM F-232 based on agar plugs and unprocessed fungal substances from cultivation media
- Botany
- Identification and molecular characterization of one novel 1Sl-encoded s-type low molecular weight glutenin B-subunit from 1Sl(1B) substitution line of wheat variety Chinese Spring (Triticum aestivum)
- Botany
- Bioinformatic analysis of Arabidopsis reverse transcriptases with a zinc-finger domain
- Botany
- Distinct expression patterns of the GDP dissociation inhibitor protein gene (OsRhoGDI2) from Oryza sativa during development and abiotic stresses
- Botany
- An application of genetics-chemicals constituents to the relatedness of three Euphorbia species
- Zoology
- Centipede (Chilopoda) richness, diversity and community structure in the forest-steppe nature reserve “Bielinek” on the Odra River (NW Poland, Central Europe)
- Zoology
- Genetic differentiating Aphis fabae and Aphis craccivora (Hemiptera: Sternorranycha: Aphididae) populations in Egypt using mitochondrial COI
- Zoology
- A faunistic study on Carabidae and Scarabaeidae in alfalfa fields from Central Greece
- Zoology
- Comparison of Macroheterocera assemblages of four forests in the Bereg Plain (Hungary, Ukraine)
- Zoology
- Late flooding combined with warm autumn – potential possibility for prolongation of transmission of mosquito-borne diseases
- Zoology
- Temperature and precipitation effects on breeding productivity of some passerines – a multivariate analysis of constant effort mist-netting data
- Cellular and Molecular Biology
- The direct action of hyaluronic acid on human U-937 and HL-60 cells – modification of native and model membranes