Home Life Sciences Prescreening, identification and harvesting of microalgae with antibacterial activity
Article
Licensed
Unlicensed Requires Authentication

Prescreening, identification and harvesting of microalgae with antibacterial activity

  • Ang Li , Ling Zhang , Zhen-yu Zhao , Sha-sha Ma , Meng Wang and Ping-huai Liu EMAIL logo
Published/Copyright: November 23, 2016
Become an author with De Gruyter Brill

Abstract

The antibacterial activity of ethyl acetate extracts and 95% ethanol extracts from 14 microalgal strains against human pathogenic bacteria was tested, and four microlalgal strains were selected for their high biomass productivity and strong antibacterial activity. Subsequently, these four strains (C14, C74, C79, and SY01) were identified as Chlorella sp., Chlorella sorokiniana, Scenedesmus armatus and Chlorella sp., respectively through BLAST analysis of homologous sequences. Additionally, three flocculants including non-ionic polyacrylamide, ferric chloride and chitosan were used to investigate the flocculation of Chlorella sorokiniana C74. The highest flocculation efficiency (96.7 ± 0.7%) was obtained with the chitosan at a dosage of 12 mg/L. Besides, the results showed that the non-ionic polyacrylamide had little influence on flocculation efficiency. None of these three flocculants had effect on the microalgal cell integrity through observing under the microscope. Basically, flocculation with chitosan was feasible for harvesting C. sorokiniana C74.

Abbreviations

ADM

agar diffusion method

BBM

Bold–s basal medium

DMSO

dimethyl sulfoxide

ITS

internal transcribed spacer

NPAM

non-ionic polyacrylamide

Acknowledgements

The authors acknowledge the technical assistance of Analytical and Testing Center of Hainan University. This work was supported by the National Science and Technology Support Program of China (2011BAD14B01), the Provincial Science and Technology Program on Modernization of Traditional Chinese Medicine of Hainan (ZY201327), and the Innovation Fund Project for Technology Based Firms (13C26244604892).

References

Al-Saif S.S.A., Abdel-Raouf N., El-Wazanani H.A. & Aref I.A. 2014. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia. Saudi J. Biol. Sci. 21: 57–64.10.1016/j.sjbs.2013.06.001Search in Google Scholar

Bernhardt H. & Clasen J. 1991. Flocculation of micro-organisms. J. Water Supply Res. T 40: 76–87.Search in Google Scholar

Besson A. & Guiraud P. 2013. High-pH-induced flocculationflotation of the hypersaline microalga Dunaliella salina. Bioresour. Technol 147: 462–470.10.1016/j.biortech.2013.08.053Search in Google Scholar

Chisti Y. 2013. Constraints to commercialization of algal fuels. J. Biotechnol. 167: 201–214.10.1016/j.jbiotec.2013.07.020Search in Google Scholar

Deng W., Wang X & Song W. 2011. Preliminary screening of antimicrobial and antitumor activities from cultivated microalgae. Mar. Sci. B 13: 60-70.Search in Google Scholar

Divakaran R. & Pillai V.N.S. 2002. Flocculation of algae using chitosan. J. Appl. Phycol. 14: 419–422.10.1023/A:1022137023257Search in Google Scholar

Eldridge R.J., Hill D.R.A. & Gladman B.R. 2012. A comparative study of the coagulation behavior of marine microalgae. J. Appl. Phycol. 24: 1667–1679.10.1007/s10811-012-9830-4Search in Google Scholar

Fguira L.F., Fotso S., Mehdi R.A., Mellouli L. & Laatsch H. 2005. Purification and structure elucidation of antifungal and antibacterial activities of a newly isolated Streptomyces sp. strain US80. Res. Microbiol. 156: 341–347.10.1016/j.resmic.2004.10.006Search in Google Scholar

Ghasemi Y., Yazdi M.T., Shafiee A., Amini M., Shokravi S. & Zarrini G. 2004. Parsiguine, a novel antimicrobial substance from Fischerella ambigua. Pharm. Biol. 2: 318–322.10.1080/13880200490511918Search in Google Scholar

Grima E.M., Belarbia E.H., Fernándeza F.G.A., Medinaa A.R. & Chisti Y. 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv. 20: 491–515.10.1016/S0734-9750(02)00050-2Search in Google Scholar

Hornsey I.S. & Hide D. 1985. The production of antimicrobial compounds by British marine algae. IV. Variation of antimicrobial activity with algal generation. Br. Phycol. J. 20: 21–25.10.1080/00071618500650041Search in Google Scholar

Kannan R.R.R., Arumugam R. & Anantharaman P. 2010. In vitro antioxidant activities of ethanol extract from Enhalus acoroides (L.F.) Royle. Asian Pac. J. Trop. Med. 3: 898–901.10.1016/S1995-7645(10)60216-7Search in Google Scholar

Kim S.G., Choi A., Ahn C.Y., Park C.S., Park Y.H. & Oh H.M. 2005. Harvesting of Spirulina platensis by cellular flotation and growth stage determination. Lett. Appl. Microbiol. 40: 190–194.10.1111/j.1472-765X.2005.01654.xSearch in Google Scholar

Li Y., Horsman M., Wu N., Lan C.Q. & Dubois-Calero N. 2008. Biofuels from microalgae. Biotechnol. Progr. 24: 815–820.10.1021/bp070371kSearch in Google Scholar

Najdenski H.M., Gigova L.G., Iliev I.I., Pilarski P.S., Lukavsky J., Tsvetkova I.V., Ninova M.S. & Kussovski V.K. 2013. Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int. J. Food Sci. Technol. 48: 1533–1540.10.1111/ijfs.12122Search in Google Scholar

Oh H.M., Lee S.J., Park M.H., Kim H.S., Kim H.C., Yoon J.H., Kwon G.S. & Yoon B.D. 2001. Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol. Lett. 23: 1229–1234.10.1023/A:1010577319771Search in Google Scholar

Oliveira D.A., Salvador A.A., Smǎnia A.J., Smǎnia E.F.A., Maraschin M. & Ferreira S.R.S. 2013. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. J. Biotechnol. 164: 423–432.10.1016/j.jbiotec.2012.09.014Search in Google Scholar

Papazi A., Makridis P. & Divanach P. 2010. Harvesting Chlorella minutissima using cell coagulants. J. Appl. Phycol. 22: 349–355.10.1007/s10811-009-9465-2Search in Google Scholar

Prakash J.W., Antonisamy J.M. & Jeeva S. 2011. Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pac. J. Trop. Biomed. 1: S170–S173.10.1016/S2221-1691(11)60149-4Search in Google Scholar

Rashid N., Rehman M.S.U. & Han J.I. 2013. Use of chitosan acid solutions to improve separation efficiency for harvesting of the microalga Chlorella vulgaris. Chem. Eng. J. 226: 238–242.10.1016/j.cej.2013.04.062Search in Google Scholar

Renault F., Sancey B., Badot P.M. & Crini G. 2009. Chitosan for coagulation/flocculation processes – an eco-friendly approach. Eur. Polym. J. 45: 1337–1348.10.1016/j.eurpolymj.2008.12.027Search in Google Scholar

Rosaline X.D., Sakthivelkumar S., Rajendran K. & Janarthanan S. 2012. Screening of selected marine algae from the coastal Tamil Nadu, South India for antibacterial activity. Asian Pac. J. Trop. Biomed. 2: S140–S146.10.1016/S2221-1691(12)60145-2Search in Google Scholar

Rwehumbiza V.M., Harrison R. & Thomsen L. 2012. Alum-induced flocculation of preconcentrated Nannochloropsis salina: residual aluminium in the biomass, FAMEs and its effects on microalgae growth upon media recycling. Chem. Eng. J. 200–202: 168–175.10.1016/j.cej.2012.06.008Search in Google Scholar

Sabarinathan K.G. & Ganesan G. 2008. Antibacterial and toxicity evaluation of C-phycocyanin and cell extract of filamentous freshwater cyanobacterium – Westiellopsis sps. Eur. Rev. Med. Pharmacol. Sci. 12: 79–82.Search in Google Scholar

Safonova E. & Reisser W. 2005. Growth promoting and inhibiting effects of extracellular substances of soil microalgae and cyanobacteria on Escherichia coli and Micrococcus luteus. Phycol. Res. 53: 189–193.10.1111/j.1440-183.2005.00384.xSearch in Google Scholar

Sanyano N., Chetpattananondh P. & Chongkhong S. 2013. Coagulation-flocculation of marine Chlorella sp. for biodiesel production. Bioresour. Technol. 147: 471–476.10.1016/j.biortech.2013.08.080Search in Google Scholar PubMed

Schlesinger A., Eisenstadt D., Bar-Gil A., Carmely H., Einbinder S. & Gressel J. 2012. Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production. Biotechnol. Adv. 30: 1023–1030.10.1016/j.biotechadv.2012.01.011Search in Google Scholar PubMed

Singh S., Kate B.N. & Banerjee U.C. 2005. Bioactive compounds from cyanobacteria and microalgae: an overview. Crit. Rev. Biotechnol. 25: 73–95.10.1080/07388550500248498Search in Google Scholar PubMed

Sirin S., Trobajo R., Ibanez C. & Salvadó J. 2012. Harvesting the microalgae Phaeodactylum tricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation. J. Appl. Phycol. 24: 1067–1080.10.1007/s10811-011-9736-6Search in Google Scholar

Spilling K., Seppälä J. & Tamminen T. 2011. Inducing autoflocculation in the diatom Phaeodactylum tricornutum through CO2 regulation. J. Appl. Phycol. 23: 959–966.10.1007/s10811-010-9616-5Search in Google Scholar

Tenney M.W., Echelberger W.F., Schuessler R.G. & Pavoni J.L. 1969. Algal flocculation with synthetic organic polyelectrolytes. Appl. Microbiol. 18: 965–971.10.1128/am.18.6.965-971.1969Search in Google Scholar PubMed PubMed Central

Thillairajasekar K., Duraipandian V., Perumal P. & Ignasimuthu S. 2009. Antimicrobial activity of Trichodesmium erythraeum (Ehr) (microalgae) from south east coast of Tamil Nadu, India. Int. J. Integrative Biol. 5: 167–170.Search in Google Scholar

Uduman N., Qi Y., Danquah K.M., Forde M.G. & Hoadley A. 2010. Marine microalgae flocculation and focused beam reflectance measurement. Chem. Eng. J. 2: 1–15.10.1016/j.cej.2010.06.046Search in Google Scholar

Vallinayagam K., Arumugam R., Kannan R.R.R., Thirumaran G. & Anantharaman P. 2009. Antibacterial activity of some selected seaweeds from Pudumadam Coastal Regions. Global J. Pharmacol. 3: 50–52.Search in Google Scholar

Xu Y., Purton S. & Baganz F. 2013. Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana. Bioresour. Technol. 129: 296–301.10.1016/j.biortech.2012.11.068Search in Google Scholar PubMed

Zheng H.L., Gao Z., Yin J.L., Tang X.H., Ji X.J. & Huang H. 2012. Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresour. Technol. 112: 212–220.10.1016/j.biortech.2012.02.086Search in Google Scholar PubMed

Received: 2016-8-9
Accepted: 2016-10-20
Published Online: 2016-11-23
Published in Print: 2016-10-1

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences

Articles in the same Issue

  1. Section Cellular and Molecular Biology
  2. Pigments from fungi, an opportunity of production for diverse applications
  3. Section Zoology
  4. Morphological view on the evolution of the immunity and lymphoid organs of vertebrates, focused on thymus
  5. Section Cellular and Molecular Biology
  6. p53-Fibrinolytic system and acute lung injury
  7. Section Cellular and Molecular Biology
  8. The multipotent action of electromagnetic field
  9. Section Cellular and Molecular Biology
  10. Prescreening, identification and harvesting of microalgae with antibacterial activity
  11. Section Botany
  12. Cloning and molecular characterization of Myb transcription factors from Leymus (Poaceae: Trticeae)
  13. Section Botany
  14. Hydrological soil behavior in areas with semi-arid vegetation (Beni Chougrane Mountains, Algeria)
  15. Section Botany
  16. Extent and persistence of water repellency in two Iranian soils
  17. Section Botany
  18. The impact of the permanent grass cover or conventional tillage on hydraulic properties of Haplic Cambisol developed on paragneiss substrate
  19. Section Zoology
  20. Species composition of tetranychoid mites (Acari: Trombidiformes: Prostigmata: Tetranychoidea) in main landscapes of Tehran and modelling ecological niche of Tetranychoidea in main climates of Tehran Province, Iran
  21. Section Zoology
  22. Abiotic factors affect the occurrence of different morphological characteristics in Erebia medusa (Lepidoptera: Nymphalidae)
  23. Section Zoology
  24. Comparison of molecular and morphometric analysis in species discrimination of larvae among five cyprinids from the subfamily Leuciscinae: A tool for sustainable conservation of riverine ichthyofauna
  25. Section Zoology
  26. Values of three branched plasma amino acids of farmed rainbow trout, Oncorhynchus mykiss
Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0143/pdf
Scroll to top button