The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes
-
Verena Keitel
Abstract
Cholangiocyte cilia are sensory organelles that extend from the apical membrane into the bile duct lumen and detect changes in bile flow and osmolarity. Whether or not cholangiocyte cilia are responsive to bile acids is unknown. TGR5 (Gpbar-1) is a membrane-bound bile acid receptor which is expressed in biliary epithelial cells and promotes chloride secretion in gallbladder epithelial cells. As shown in the present study, TGR5 is localized in the primary cilium of mouse and human cholangiocytes. Here the receptor could play an important role in coupling biliary bile acid concentration and composition to ductular bile formation.
©2010 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Guest Editorial
- Highlight: Of Systems and Structures
- HIGHLIGHT: STRUCTURAL SYSTEMS BIOLOGY
- Converging on the function of intrinsically disordered nucleoporins in the nuclear pore complex
- Towards molecular systems biology of gene transcription and regulation
- Small-angle X-ray and neutron scattering as a tool for structural systems biology
- The type III secretion injectisome, a complex nanomachine for intracellular ‘toxin’ delivery
- Structural insights into the evolution of the adaptive immune system: the variable lymphocyte receptors of jawless vertebrates
- The XPD helicase: XPanDing archaeal XPD structures to get a grip on human DNA repair
- Decoding transcription and microRNA-mediated translation control in Drosophila development
- Human SepSecS or SLA/LP: selenocysteine formation and autoimmune hepatitis
- PROTEIN STRUCTURE AND FUNCTION
- The rhodanese RhdA helps Azotobacter vinelandii in maintaining cellular redox balance
- MEMBRANES, LIPIDS, GLYCOBIOLOGY
- The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes
- CELL BIOLOGY AND SIGNALING
- miR-221/222 suppression protects against endoplasmic reticulum stress-induced apoptosis via p27Kip1- and MEK/ERK-mediated cell cycle regulation
- Tissue kallikrein promotes prostate cancer cell migration and invasion via a protease-activated receptor-1-dependent signaling pathway
- Sprouty4 levels are increased under hypoxic conditions by enhanced mRNA stability and transcription
- PROTEOLYSIS
- Degradation of human kininogens with the release of kinin peptides by extracellular proteinases of Candida spp.
- NOVEL TECHNIQUES
- Detection of breast cancer-related antigens through cDNA phage-displayed protein microarray
Articles in the same Issue
- Guest Editorial
- Highlight: Of Systems and Structures
- HIGHLIGHT: STRUCTURAL SYSTEMS BIOLOGY
- Converging on the function of intrinsically disordered nucleoporins in the nuclear pore complex
- Towards molecular systems biology of gene transcription and regulation
- Small-angle X-ray and neutron scattering as a tool for structural systems biology
- The type III secretion injectisome, a complex nanomachine for intracellular ‘toxin’ delivery
- Structural insights into the evolution of the adaptive immune system: the variable lymphocyte receptors of jawless vertebrates
- The XPD helicase: XPanDing archaeal XPD structures to get a grip on human DNA repair
- Decoding transcription and microRNA-mediated translation control in Drosophila development
- Human SepSecS or SLA/LP: selenocysteine formation and autoimmune hepatitis
- PROTEIN STRUCTURE AND FUNCTION
- The rhodanese RhdA helps Azotobacter vinelandii in maintaining cellular redox balance
- MEMBRANES, LIPIDS, GLYCOBIOLOGY
- The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes
- CELL BIOLOGY AND SIGNALING
- miR-221/222 suppression protects against endoplasmic reticulum stress-induced apoptosis via p27Kip1- and MEK/ERK-mediated cell cycle regulation
- Tissue kallikrein promotes prostate cancer cell migration and invasion via a protease-activated receptor-1-dependent signaling pathway
- Sprouty4 levels are increased under hypoxic conditions by enhanced mRNA stability and transcription
- PROTEOLYSIS
- Degradation of human kininogens with the release of kinin peptides by extracellular proteinases of Candida spp.
- NOVEL TECHNIQUES
- Detection of breast cancer-related antigens through cDNA phage-displayed protein microarray