The rhodanese RhdA helps Azotobacter vinelandii in maintaining cellular redox balance
-
William Remelli
Abstract
The tandem domain rhodanese-homology protein RhdA of Azotobacter vinelandii shows an active-site loop structure that confers structural peculiarity in the environment of its catalytic cysteine residue. The in vivo effects of the lack of RhdA were investigated using an A. vinelandii mutant strain (MV474) in which the rhdA gene was disrupted by deletion. Here, by combining analytical measurements and transcript profiles, we show that deletion of the rhdA gene generates an oxidative stress condition to which A. vinelandii responds by activating defensive mechanisms. In conditions of growth in the presence of the superoxide generator phenazine methosulfate, a stressor-dependent induction of rhdA gene expression was observed, thus highlighting that RhdA is important for A. vinelandii to sustain oxidative stress. The potential of RhdA to buffer general levels of oxidants in A. vinelandii cells via redox reactions involving its cysteine thiol is discussed.
©2010 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Guest Editorial
- Highlight: Of Systems and Structures
- HIGHLIGHT: STRUCTURAL SYSTEMS BIOLOGY
- Converging on the function of intrinsically disordered nucleoporins in the nuclear pore complex
- Towards molecular systems biology of gene transcription and regulation
- Small-angle X-ray and neutron scattering as a tool for structural systems biology
- The type III secretion injectisome, a complex nanomachine for intracellular ‘toxin’ delivery
- Structural insights into the evolution of the adaptive immune system: the variable lymphocyte receptors of jawless vertebrates
- The XPD helicase: XPanDing archaeal XPD structures to get a grip on human DNA repair
- Decoding transcription and microRNA-mediated translation control in Drosophila development
- Human SepSecS or SLA/LP: selenocysteine formation and autoimmune hepatitis
- PROTEIN STRUCTURE AND FUNCTION
- The rhodanese RhdA helps Azotobacter vinelandii in maintaining cellular redox balance
- MEMBRANES, LIPIDS, GLYCOBIOLOGY
- The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes
- CELL BIOLOGY AND SIGNALING
- miR-221/222 suppression protects against endoplasmic reticulum stress-induced apoptosis via p27Kip1- and MEK/ERK-mediated cell cycle regulation
- Tissue kallikrein promotes prostate cancer cell migration and invasion via a protease-activated receptor-1-dependent signaling pathway
- Sprouty4 levels are increased under hypoxic conditions by enhanced mRNA stability and transcription
- PROTEOLYSIS
- Degradation of human kininogens with the release of kinin peptides by extracellular proteinases of Candida spp.
- NOVEL TECHNIQUES
- Detection of breast cancer-related antigens through cDNA phage-displayed protein microarray
Articles in the same Issue
- Guest Editorial
- Highlight: Of Systems and Structures
- HIGHLIGHT: STRUCTURAL SYSTEMS BIOLOGY
- Converging on the function of intrinsically disordered nucleoporins in the nuclear pore complex
- Towards molecular systems biology of gene transcription and regulation
- Small-angle X-ray and neutron scattering as a tool for structural systems biology
- The type III secretion injectisome, a complex nanomachine for intracellular ‘toxin’ delivery
- Structural insights into the evolution of the adaptive immune system: the variable lymphocyte receptors of jawless vertebrates
- The XPD helicase: XPanDing archaeal XPD structures to get a grip on human DNA repair
- Decoding transcription and microRNA-mediated translation control in Drosophila development
- Human SepSecS or SLA/LP: selenocysteine formation and autoimmune hepatitis
- PROTEIN STRUCTURE AND FUNCTION
- The rhodanese RhdA helps Azotobacter vinelandii in maintaining cellular redox balance
- MEMBRANES, LIPIDS, GLYCOBIOLOGY
- The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes
- CELL BIOLOGY AND SIGNALING
- miR-221/222 suppression protects against endoplasmic reticulum stress-induced apoptosis via p27Kip1- and MEK/ERK-mediated cell cycle regulation
- Tissue kallikrein promotes prostate cancer cell migration and invasion via a protease-activated receptor-1-dependent signaling pathway
- Sprouty4 levels are increased under hypoxic conditions by enhanced mRNA stability and transcription
- PROTEOLYSIS
- Degradation of human kininogens with the release of kinin peptides by extracellular proteinases of Candida spp.
- NOVEL TECHNIQUES
- Detection of breast cancer-related antigens through cDNA phage-displayed protein microarray