Home miR-221/222 suppression protects against endoplasmic reticulum stress-induced apoptosis via p27Kip1- and MEK/ERK-mediated cell cycle regulation
Article
Licensed
Unlicensed Requires Authentication

miR-221/222 suppression protects against endoplasmic reticulum stress-induced apoptosis via p27Kip1- and MEK/ERK-mediated cell cycle regulation

  • Rongyang Dai , Juan Li , Youping Liu , Dongmei Yan , Shaokun Chen , Chunyan Duan , Xiaoyan Liu , Tao He and Hong Li
Published/Copyright: May 19, 2010
Biological Chemistry
From the journal Volume 391 Issue 7

Abstract

Cancer cells are relatively resistant to endoplasmic reticulum (ER) stress-induced apoptosis. However, the underlying mechanisms remain largely unclear. We observed that the microRNAs miR-221/222 are associated with apoptosis regulation under ER stress in human hepatocellular carcinoma (HCC) cells. Induction of ER stress does not trigger significant apoptosis but obviously causes downregulation of miR-221/222 in HCC cells. In these cells, ER stress-induced apoptosis is enhanced by miR-221/222 mimics and attenuated by miR-221/222 inhibitors. miR-221/222 promoted-apoptosis under ER stress is associated with p27Kip1- and MEK/ERK-mediated cell cycle regulation. Our results suggest that suppression of miR-221/222 plays a crucial role in the protection against apoptosis induced by ER stress in HCC cells.


Corresponding authors ;

Received: 2009-12-1
Accepted: 2010-3-2
Published Online: 2010-05-19
Published in Print: 2010-07-01

©2010 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Guest Editorial
  2. Highlight: Of Systems and Structures
  3. HIGHLIGHT: STRUCTURAL SYSTEMS BIOLOGY
  4. Converging on the function of intrinsically disordered nucleoporins in the nuclear pore complex
  5. Towards molecular systems biology of gene transcription and regulation
  6. Small-angle X-ray and neutron scattering as a tool for structural systems biology
  7. The type III secretion injectisome, a complex nanomachine for intracellular ‘toxin’ delivery
  8. Structural insights into the evolution of the adaptive immune system: the variable lymphocyte receptors of jawless vertebrates
  9. The XPD helicase: XPanDing archaeal XPD structures to get a grip on human DNA repair
  10. Decoding transcription and microRNA-mediated translation control in Drosophila development
  11. Human SepSecS or SLA/LP: selenocysteine formation and autoimmune hepatitis
  12. PROTEIN STRUCTURE AND FUNCTION
  13. The rhodanese RhdA helps Azotobacter vinelandii in maintaining cellular redox balance
  14. MEMBRANES, LIPIDS, GLYCOBIOLOGY
  15. The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes
  16. CELL BIOLOGY AND SIGNALING
  17. miR-221/222 suppression protects against endoplasmic reticulum stress-induced apoptosis via p27Kip1- and MEK/ERK-mediated cell cycle regulation
  18. Tissue kallikrein promotes prostate cancer cell migration and invasion via a protease-activated receptor-1-dependent signaling pathway
  19. Sprouty4 levels are increased under hypoxic conditions by enhanced mRNA stability and transcription
  20. PROTEOLYSIS
  21. Degradation of human kininogens with the release of kinin peptides by extracellular proteinases of Candida spp.
  22. NOVEL TECHNIQUES
  23. Detection of breast cancer-related antigens through cDNA phage-displayed protein microarray
Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/bc.2010.072/html?lang=en
Scroll to top button