Abstract
Atomic layer deposition (ALD) facilitates the deposition of coatings with precise thickness, high surface conformity, structural uniformity, and nodular-free structure, which are properties desired in high-power laser coatings. ALD was studied to produce uniform and stable Al2O3 and HfO2 single layers and was employed to produce anti-reflection coatings for the harmonics (1ω, 2ω, 3ω, and 4ω) of the Nd:YAG laser. In order to qualify the ALD films for high-power laser applications, the band gap energy, absorption, and element content of single layers were characterized. The damage tests of anti-reflection coatings were carried out with a laser system operated at 1ω, 2ω, 3ω, and 4ω, respectively. The damage mechanism was discussed by analyzing the damage morphology and electric field intensity difference. ALD coatings exhibit stable growth rates, low absorption, and rather high laser-induced damage threshold (LIDT). The LIDT is limited by HfO2 as the employed high-index material. These properties indicate the high versatility of ALD films for applications in high-power coatings.
References
[1] D. H. Crandall, C. J. Keane, K. Bieg, L. V. Powers and M. M. Sluyter, Proc. SPIE 3047, 2–13 (1997).10.1117/12.294243Suche in Google Scholar
[2] M. Bowers, J. Wisoff, M. Herrmann, T. Anklam, J. Dawson, et al., Proc. SPIE 10084, 1008403 (2017).10.1117/12.2257571Suche in Google Scholar
[3] J. A. Horvath, Proc. SPIE 3047, 148–157 (1997).10.1117/12.294298Suche in Google Scholar
[4] V. Denis, V. Beau, L. L. Deroff, L. Lacampagne, T. Chies, et al., Proc. SPIE 10084, 1008401 (2017).10.1117/12.2276032Suche in Google Scholar
[5] C. J. Stolz, C. L. Weinzapfel, A. L. Rigatti, J. B. Oliver, J. Taniguchi, et al., Proc. SPIE 5193, 50–58 (2004).10.1117/12.511677Suche in Google Scholar
[6] C. J. Stolz, J. R. Taylor, W. K. Eickelberg and J. D. Lindh, Appl. Opt. 32(28), 5666–5672 (1993).10.1364/AO.32.005666Suche in Google Scholar PubMed
[7] I. Petrov, P. B. Barna, L. Hultman and J. E. Greene, J. Vac. Sci. Technol. A 21(5), S117–S126 (2003).10.1116/1.1601610Suche in Google Scholar
[8] C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, et al., Proc. SPIE 3264, 105–112 (1998).10.1117/12.311905Suche in Google Scholar
[9] P. A. Sermon, M. S. W. Vong, N. J. Bazin, R. Badheka and D. M. Spriggs, Proc. SPIE 2633, 464–474 (1995).10.1117/12.228295Suche in Google Scholar
[10] M. R. Kozlowski and I. M. Thomas, Proc. SPIE 2262, 54–59 (1994).10.1117/12.185807Suche in Google Scholar
[11] F. Beauville, D. Buskulic, R. Flaminio, F. Marion, A. Masserot, et al., Proc. SPIE 5250, 483–492 (2004).10.1117/12.516431Suche in Google Scholar
[12] M. Sigwarth, J. Baumgartner, A. Bell, G. Cagnoli, A. Fischer, et al., Proc. SPIE 9908, 99084F (2016).10.1117/12.2232271Suche in Google Scholar
[13] R. A. Negres, C. J. Stolz, M. D. Thomas and M. Caputo, Proc. SPIE 10447, 104470x (2017).Suche in Google Scholar
[14] V. Miikkulainen, M. Leskelä, M. Ritala and R. L. Puurunen, J. Appl. Phys. 113, 021301 (2013).10.1063/1.4757907Suche in Google Scholar
[15] A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, et al., Appl. Opt. 48(9), 1727–1732 (2009).10.1364/AO.48.001727Suche in Google Scholar
[16] A. D. Jewell, J. Hennessy, M. E. Hoenk and S. Nikzad, Proc. SPIE 8820, 213–219 (2013).Suche in Google Scholar
[17] G. Triani, P. J. Evans, D. R. G. Mitchell, D. J. Attard, K. S. Finnie, et al., Proc. SPIE 5870, 587009 (2005).10.1117/12.638039Suche in Google Scholar
[18] R. Ali, M. R. Saleem, P. Pääkkönen and S. Honkanen, Nanomaterials 5(2), 792–803 (2015).10.3390/nano5020792Suche in Google Scholar
[19] K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, L. Ghazaryan, et al., Opt. Mater. Express 6(2), 660–670 (2016).10.1364/OME.6.000660Suche in Google Scholar
[20] Q. Zhang, F. Pan, J. Luo, Q. Wu, Z. Wang, et al., J. Alloys Compd. 659, 288–294 (2016).10.1016/j.jallcom.2015.11.048Suche in Google Scholar
[21] Z. Liu, S. Chen, P. Ma, Y. Wei, Y. Zheng, et al., Opt. Express 20(2), 854–863 (2012).10.1364/OE.20.000854Suche in Google Scholar PubMed
[22] Y. Wei, H. Liu, O. Sheng, Z. Liu, S. Chen, et al., Appl. Opt. 50(24), 4720–4727 (2011).10.1364/AO.50.004720Suche in Google Scholar PubMed
[23] L. Jensen, J. Maula and D. Ristau, Proc. SPIE 8530, 206–207 (2012).Suche in Google Scholar
[24] H. Liu, L. Jensen, J. Becker, M. C. Wurz, P. Ma, et al., Proc. SPIE 10014, 1001421 (2016).10.1117/12.2245051Suche in Google Scholar
[25] D. Ristau, X. C. Dang and J. Ebert, NBS Spec. Publ. 727, 298–312 (1984).Suche in Google Scholar
[26] E. A. Davis and N. F. Mott, Philos. Mag. A 22(179), 903–921 (1970).10.1080/14786437008221061Suche in Google Scholar
[27] ISO 11551, ‘Optics and optical instruments – Lasers and laser-related equipment – Test method for absorptance of optical laser components,’ (2003).Suche in Google Scholar
[28] U. Willamowski, D. Ristau and E. Welsch, Appl. Opt. 37(36), 8362–8370 (1998).10.1364/AO.37.008362Suche in Google Scholar
[29] ISO 21254, ‘Lasers and laser-related equipment – Test methods for laser-induced damage threshold,’ (2011).Suche in Google Scholar
[30] M. Mero, J. Liu, W. Rudolph, D. Ristau and K. Starke, Phys. Rev. B 71, 115109 (2005).10.1103/PhysRevB.71.115109Suche in Google Scholar
[31] C. J. Stolz, M. Caputo, A. J. Griffin and M. D. Thomas, Proc. SPIE 7842, 784206 (2010).10.1117/12.867742Suche in Google Scholar
[32] L. Jensen, M. Mende, H. Blaschke, D. Ristau, D. Nguyen, et al., Proc. SPIE 7842, 748207 (2010).10.1117/12.867238Suche in Google Scholar
©2018 THOSS Media & De Gruyter, Berlin/Boston
Artikel in diesem Heft
- Cover and Frontmatter
- Editorial
- Reviewer recognition and editor’s note
- Community
- News
- Topical Issue: Optical Coatings
- Editorial
- Special issue on optical coatings
- Review Article
- Simulation of the optical coating deposition
- Research Articles
- ALD anti-reflection coatings at 1ω, 2ω, 3ω, and 4ω for high-power ns-laser application
- Determination of refractive index and thickness of YbF3 thin films deposited at different bias voltages of APS ion source from spectrophotometric methods
- Effects of fixture rotation on coating uniformity for high-performance optical filter fabrication
- Design and manufacture of super-multilayer optical filters based on PARMS technology
- Tutorial
- Monolithic photonic integration for visible and short near-infrared wavelengths: technologies and platforms for bio and life science applications
- Review Articles
- Optimization of freeform surfaces using intelligent deformation techniques for LED applications
- On-chip photonic microsystem for optical signal processing based on silicon and silicon nitride platforms
- Letter
- On-chip Mach-Zehnder interferometer for OCT systems
- Research Article
- Broadband and scalable optical coupling for silicon photonics using polymer waveguides
Artikel in diesem Heft
- Cover and Frontmatter
- Editorial
- Reviewer recognition and editor’s note
- Community
- News
- Topical Issue: Optical Coatings
- Editorial
- Special issue on optical coatings
- Review Article
- Simulation of the optical coating deposition
- Research Articles
- ALD anti-reflection coatings at 1ω, 2ω, 3ω, and 4ω for high-power ns-laser application
- Determination of refractive index and thickness of YbF3 thin films deposited at different bias voltages of APS ion source from spectrophotometric methods
- Effects of fixture rotation on coating uniformity for high-performance optical filter fabrication
- Design and manufacture of super-multilayer optical filters based on PARMS technology
- Tutorial
- Monolithic photonic integration for visible and short near-infrared wavelengths: technologies and platforms for bio and life science applications
- Review Articles
- Optimization of freeform surfaces using intelligent deformation techniques for LED applications
- On-chip photonic microsystem for optical signal processing based on silicon and silicon nitride platforms
- Letter
- On-chip Mach-Zehnder interferometer for OCT systems
- Research Article
- Broadband and scalable optical coupling for silicon photonics using polymer waveguides