Mitochondrial morphology and distribution in mammalian cells
-
Ann E. Frazier
Abstract
It is now appreciated that mitochondria form tubular networks that adapt to the requirements of the cell by undergoing changes in their shape through fission and fusion. Proper mitochondrial distribution also appears to be required for ATP delivery and calcium regulation, and, in some cases, for cell development. While we now realise the great importance of mitochondria for the cell, we are only beginning to work out how these organelles undergo the drastic morphological changes that are essential for cellular function. Of the few known components involved in shaping mitochondria, some have been found to be essential to life and their gene mutations are linked to neurological disorders, while others appear to be recruited in the activation of cell death pathways. Here we review our current understanding of the functions of the main players involved in mitochondrial fission, fusion and distribution in mammalian cells.
References
Alexander, C., Votruba, M., Pesch, U.E.A., Thiselton, D.L., Mayer, S., Moore, A., Rodriguez, M., Kellner, U., Leo-Kottler, B., Auburger, G., et al. (2000). OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet.26, 211–215.10.1038/79944Search in Google Scholar PubMed
Amati-Bonneau, P., Guichet, A., Olichon, A., Chevrollier, A., Viala, F., Miot, S., Ayuso, C., Odent, S., Arrouet, C., Verny, C., et al. (2005). OPA1 R445H mutation in optic atrophy associated with sensorineural deafness. Ann. Neurol.58, 958–963.10.1002/ana.20681Search in Google Scholar PubMed
Arnoult, D., Grodet, A., Lee, Y.J., Estaquier, J., and Blackstone, C. (2005). Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J. Biol. Chem.280, 35742–35750.10.1074/jbc.M505970200Search in Google Scholar PubMed
Breckenridge, D.G., Stojanovic, M., Marcellus, R.C., and Shore, G.C. (2003). Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol.160, 1115–1127.10.1083/jcb.200212059Search in Google Scholar PubMed PubMed Central
Brickley, K., Smith, M.J., Beck, M., and Stephenson, F.A. (2005). GRIF-1 and OIP106, members of a novel gene family of coiled-coil domain proteins: association in vivo and in vitro with kinesin. J. Biol. Chem.280, 14723–14732.10.1074/jbc.M409095200Search in Google Scholar PubMed
Cai, Q., Gerwin, C., and Sheng, Z.H. (2005). Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. J. Cell Biol.170, 959–969.10.1083/jcb.200506042Search in Google Scholar PubMed PubMed Central
Cerveny, K.L., McCaffery, J.M., and Jensen, R.E. (2001). Division of mitochondria requires a novel DMN1-interacting protein, Net2p. Mol. Biol. Cell12, 309–321.10.1091/mbc.12.2.309Search in Google Scholar PubMed PubMed Central
Chen, H. and Chan, D.C. (2004). Mitochondrial dynamics in mammals. Curr. Top. Dev. Biol.59, 119–144.10.1016/S0070-2153(04)59005-1Search in Google Scholar PubMed
Chen, H., Chomyn, A., and Chan, D.C. (2005). Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem.280, 26185–26192.10.1074/jbc.M503062200Search in Google Scholar PubMed
Chen, H., Detmer, S.A., Ewald, A.J., Griffin, E.E., Fraser, S.E., and Chan, D.C. (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol.160, 189–200.10.1083/jcb.200211046Search in Google Scholar PubMed PubMed Central
Cipolat, S., Martins de Brito, O., Dal Zilio, B., and Scorrano, L. (2004). OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. USA101, 15927–15932.10.1073/pnas.0407043101Search in Google Scholar PubMed PubMed Central
De Vos, K.J., Allan, V.J., Grierson, A.J., and Sheetz, M.P. (2005). Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Curr. Biol.15, 678–683.10.1016/j.cub.2005.02.064Search in Google Scholar PubMed
Delettre, C., Lenaers, G., Griffoin, J.M., Gigarel, N., Lorenzo, C., Belenguer, P., Pelloquin, L., Grosgeorge, J., Turc-Carel, C., Perret, E., et al. (2000). Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet.26, 207–210.10.1038/79936Search in Google Scholar PubMed
Eura, Y., Ishihara, N., Yokota, S., and Mihara, K. (2003). Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. (Tokyo)134, 333–344.10.1093/jb/mvg150Search in Google Scholar PubMed
Fekkes, P., Shepard, K.A., and Yaffe, M.P. (2000). Gag3p, an outer membrane protein required for fission of mitochondrial tubules. J. Cell Biol.151, 333–340.10.1083/jcb.151.2.333Search in Google Scholar PubMed PubMed Central
Frank, S., Gaume, B., Bergmann-Leitner, E.S., Leitner, W.W., Robert, E.G., Catez, F., Smith, C.L., and Youle, R.J. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell1, 515–525.10.1016/S1534-5807(01)00055-7Search in Google Scholar PubMed
Fransson, A., Ruusala, A., and Aspenström, P. (2003). Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. J. Biol. Chem.278, 6495–6502.10.1074/jbc.M208609200Search in Google Scholar PubMed
Frederick, R.L., McCaffery, J.M., Cunningham, K.W., Okamoto, K., and Shaw, J.M. (2004). Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway. J. Cell Biol.167, 87–98.10.1083/jcb.200405100Search in Google Scholar PubMed PubMed Central
Fritz, S., Rapaport, D., Klanner, E., Neupert, W., and Westermann, B. (2001). Connection of the mitochondrial outer and inner membranes by Fzo1 is critical for organellar fusion. J. Cell Biol.152, 683–692.10.1083/jcb.152.4.683Search in Google Scholar PubMed PubMed Central
Germain, M., Mathai, J.P., McBride, H.M., and Shore, G.C. (2005). Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J.24, 1546–1556.10.1038/sj.emboj.7600592Search in Google Scholar PubMed PubMed Central
Griparic, L., van der Wel, N.N., Orozco, I.J., Peters, P.J., and van der Bliek, A.M. (2004). Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J. Biol. Chem.279, 18792–18798.10.1074/jbc.M400920200Search in Google Scholar PubMed
Guo, X., Macleod, G.T., Wellington, A., Hu, F., Panchumarthi, S., Schoenfield, M., Marin, L., Charlton, M.P., Atwood, H.L., and Zinsmaier, K.E. (2005). The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron47, 379–393.10.1016/j.neuron.2005.06.027Search in Google Scholar PubMed
Hales, K.G. and Fuller, M.T. (1997). Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell90, 121–129.10.1016/S0092-8674(00)80319-0Search in Google Scholar
Hollenbeck, P.J. and Saxton, W.M. (2005). The axonal transport of mitochondria. J. Cell Sci.118, 5411–5419.10.1242/jcs.02745Search in Google Scholar PubMed PubMed Central
Ingerman, E., Perkins, E.M., Marino, M., Mears, J.A., McCaffery, J.M., Hinshaw, J.E., and Nunnari, J. (2005). Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol.170, 1021–1027.10.1083/jcb.200506078Search in Google Scholar PubMed PubMed Central
Ishihara, N., Eura, Y., and Mihara, K. (2004). Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J. Cell Sci.117, 6535–6546.10.1242/jcs.01565Search in Google Scholar PubMed
James, D.I., Parone, P.A., Mattenberger, Y., and Martinou, J.C. (2003). hFis1, a novel component of the mammalian mitochondrial fission machinery. J. Biol. Chem.278, 36373–36379.10.1074/jbc.M303758200Search in Google Scholar PubMed
Karbowski, M., Lee, Y.J., Gaume, B., Jeong, S.Y., Frank, S., Nechushtan, A., Santel, A., Fuller, M., Smith, C.L., and Youle, R.J. (2002). Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol.159, 931–938.10.1083/jcb.200209124Search in Google Scholar PubMed PubMed Central
Karbowski, M., Jeong, S.Y., and Youle, R.J. (2004). Endophilin B1 is required for the maintenance of mitochondrial morphology. J. Cell Biol.166, 1027–1039.10.1083/jcb.200407046Search in Google Scholar PubMed PubMed Central
Kijima, K., Numakura, C., Izumino, H., Umetsu, K., Nezu, A., Shiiki, T., Ogawa, M., Ishizaki, Y., Kitamura, T., Shozawa, Y., and Hayasaka, K. (2005). Mitochondrial GTPase mitofusin 2 mutation in Charcot-Marie-Tooth neuropathy type 2A. Hum. Genet.116, 23–27.10.1007/s00439-004-1199-2Search in Google Scholar PubMed
Knowles, M.K., Guenza, M.G., Capaldi, R.A., and Marcus, A.H. (2002). Cytoskeletal-assisted dynamics of the mitochondrial reticulum in living cells. Proc. Natl. Acad. Sci. USA99, 14772–14777.10.1073/pnas.232346999Search in Google Scholar PubMed PubMed Central
Koshiba, T., Detmer, S.A., Kaiser, J.T., Chen, H., McCaffery, J.M., and Chan, D.C. (2004). Structural basis of mitochondrial tethering by mitofusin complexes. Science305, 858–862.10.1126/science.1099793Search in Google Scholar PubMed
Lee, Y.J., Jeong, S.Y., Karbowski, M., Smith, C.L., and Youle, R.J. (2004). Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell15, 5001–5011.10.1091/mbc.e04-04-0294Search in Google Scholar PubMed PubMed Central
Legesse-Miller, A., Massol, R.H., and Kirchhausen, T. (2003). Constriction and Dnm1p recruitment are distinct processes in mitochondrial fission. Mol. Biol. Cell14, 1953–1963.10.1091/mbc.e02-10-0657Search in Google Scholar PubMed PubMed Central
Legros, F., Lombes, A., Frachon, P., and Rojo, M. (2002). Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol. Biol. Cell13, 4343–4354.10.1091/mbc.e02-06-0330Search in Google Scholar PubMed PubMed Central
Li, Z., Okamoto, K., Hayashi, Y., and Sheng, M. (2004). The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell119, 873–887.10.1016/j.cell.2004.11.003Search in Google Scholar PubMed
Misaka, T., Miyashita, T., and Kubo, Y. (2002). Primary structure of a dynamin-related mouse mitochondrial GTPase and its distribution in brain, subcellular localization, and effect on mitochondrial morphology. J. Biol. Chem.277, 15834–15842.10.1074/jbc.M109260200Search in Google Scholar PubMed
Mozdy, A.D., McCaffery, J.M., and Shaw, J.M. (2000). Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J. Cell Biol.151, 367–380.10.1083/jcb.151.2.367Search in Google Scholar PubMed PubMed Central
Okamoto, K. and Shaw, J.M. (2005). Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu. Rev. Genet.39, 503–536.10.1146/annurev.genet.38.072902.093019Search in Google Scholar PubMed
Olichon, A., Emorine, L.J., Descoins, E., Pelloquin, L., Brichese, L., Gas, N., Guillou, E., Delettre, C., Valette, A., Hamel, C.P., et al. (2002). The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett.523, 171–176.10.1016/S0014-5793(02)02985-XSearch in Google Scholar PubMed
Olichon, A., Baricault, L., Gas, N., Guillou, E., Valette, A., Belenguer, P., and Lenaers, G. (2003). Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem.278, 7743–7746.10.1074/jbc.C200677200Search in Google Scholar PubMed
Otsuga, D., Keegan, B.R., Brisch, E., Thatcher, J.W., Hermann, G.J., Bleazard, W., and Shaw, J.M. (1998). The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. J. Cell Biol.143, 333–349.10.1083/jcb.143.2.333Search in Google Scholar PubMed PubMed Central
Praefcke, G.J. and McMahon, H.T. (2004). The dynamin superfamily: universal membrane tubulation and fission molecules? Nat. Rev. Mol. Cell Biol.5, 133–147.10.1038/nrm1313Search in Google Scholar PubMed
Rojo, M., Legros, F., Chateau, D., and Lombès, A. (2002). Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J. Cell Sci.115, 1663–1674.10.1242/jcs.115.8.1663Search in Google Scholar PubMed
Santel, A. and Fuller, M.T. (2001). Control of mitochondrial morphology by a human mitofusin. J. Cell Sci.114, 867–874.10.1242/jcs.114.5.867Search in Google Scholar PubMed
Satoh, M., Hamamoto, T., Seo, N., Kagawa, Y., and Endo, H. (2003). Differential sublocalization of the dynamin-related protein OPA1 isoforms in mitochondria. Biochem. Biophys. Res. Commun.300, 482–493.10.1016/S0006-291X(02)02874-7Search in Google Scholar
Scorrano, L. (2005). Proteins that fuse and fragment mitochondria in apoptosis: con-fissing a deadly con-fusion? J. Bioenerg. Biomembr.37, 165–170.10.1007/s10863-005-6572-xSearch in Google Scholar PubMed
Scorrano, L., Ashiya, M., Buttle, K., Weiler, S., Oakes, S.A., Mannella, C.A., and Korsmeyer, S.J. (2002). A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell2, 55–67.10.1016/S1534-5807(01)00116-2Search in Google Scholar
Skulachev, V.P. (2001). Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem. Sci.26, 23–29.10.1016/S0968-0004(00)01735-7Search in Google Scholar PubMed
Smirnova, E., Griparic, L., Shurland, D.L., and van der Bliek, A.M. (2001). Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell12, 2245–2256.10.1091/mbc.12.8.2245Search in Google Scholar PubMed PubMed Central
Smirnova, E., Shurland, D.L., Ryazantsev, S.N., and van der Bliek, A.M. (1998). A human dynamin-related protein controls the distribution of mitochondria. J. Cell Biol.143, 351–358.10.1083/jcb.143.2.351Search in Google Scholar PubMed PubMed Central
Stojanovski, D., Koutsopoulos, O.S., Okamoto, K., and Ryan, M.T. (2004). Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J. Cell Sci.117, 1201–1210.10.1242/jcs.01058Search in Google Scholar PubMed
Stowers, R.S., Megeath, L.J., Górska-Andrzejak, J., Meinertzhagen, I.A., and Schwarz, T.L. (2002). Axonal transport of mitochondria to synapses depends on Milton, a novel Drosophila protein. Neuron36, 1063–1077.10.1016/S0896-6273(02)01094-2Search in Google Scholar
Sugioka, R., Shimizu, S., and Tsujimoto, Y. (2004). Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem.279, 52726–52734.10.1074/jbc.M408910200Search in Google Scholar PubMed
Suzuki, M., Jeong, S.Y., Karbowski, M., Youle, R.J., and Tjandra, N. (2003). The solution structure of human mitochondria fission protein Fis1 reveals a novel TPR-like helix bundle. J. Mol. Biol.334, 445–458.10.1016/j.jmb.2003.09.064Search in Google Scholar PubMed
Szabadkai, G., Simoni, A.M., Chami, M., Wieckowski, M.R., Youle, R.J., and Rizzuto, R. (2004). Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol. Cell16, 59–68.10.1016/j.molcel.2004.09.026Search in Google Scholar PubMed
Tanaka, Y., Kanai, Y., Okada, Y., Nonaka, S., Takeda, S., Harada, A., and Hirokawa, N. (1998). Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell93, 1147–1158.10.1016/S0092-8674(00)81459-2Search in Google Scholar
Tieu, Q. and Nunnari, J. (2000). Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division. J. Cell Biol.151, 353–366.10.1083/jcb.151.2.353Search in Google Scholar PubMed PubMed Central
Tinel, H., Cancela, J.M., Mogami, H., Gerasimenko, J.V., Gerasimenko, O.V., Tepikin, A.V., and Petersen, O.H. (1999). Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca2+ signals. EMBO J.18, 4999–5008.10.1093/emboj/18.18.4999Search in Google Scholar PubMed PubMed Central
Tondera, D., Czauderna, F., Paulick, K., Schwarzer, R., Kaufmann, J., and Santel, A. (2005). The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J. Cell Sci.118, 3049–3059.10.1242/jcs.02415Search in Google Scholar PubMed
Varadi, A., Johnson-Cadwell, L.I., Cirulli, V., Yoon, Y., Allan, V.J., and Rutter, G.A. (2004). Cytoplasmic dynein regulates the subcellular distribution of mitochondria by controlling the recruitment of the fission factor dynamin-related protein-1. J. Cell Sci.117, 4389–4400.10.1242/jcs.01299Search in Google Scholar PubMed
Wong, E.D., Wagner, J.A., Gorsich, S.W., McCaffery, J.M., Shaw, J.M., and Nunnari, J. (2000). The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J. Cell Biol.151, 341–352.10.1083/jcb.151.2.341Search in Google Scholar PubMed PubMed Central
Wozniak, M.J., Melzer, M., Dorner, C., Haring, H.U., and Lammers, R. (2005). The novel protein KBP regulates mitochondria localization by interaction with a kinesin-like protein. BMC Cell Biol.6, 35.10.1186/1471-2121-6-35Search in Google Scholar PubMed PubMed Central
Yoon, Y., Krueger, E.W., Oswald, B.J., and McNiven, M.A. (2003). The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol. Cell. Biol.23, 5409–5420.10.1128/MCB.23.15.5409-5420.2003Search in Google Scholar PubMed PubMed Central
Yoon, Y., Pitts, K.R., and McNiven, M.A. (2001). Mammalian dynamin-like protein DLP1 tubulates membranes. Mol. Biol. Cell12, 2894–2905.10.1091/mbc.12.9.2894Search in Google Scholar PubMed PubMed Central
Youle, R.J. and Karbowski, M. (2005). Mitochondrial fission in apoptosis. Nat. Rev. Mol. Cell Biol.6, 657–663.10.1038/nrm1697Search in Google Scholar PubMed
Züchner, S., Mersiyanova, I.V., Muglia, M., Bissar-Tadmouri, N., Rochelle, J., Dadali, E.L., Zappia, M., Nelis, E., Patitucci, A., Senderek, J., et al. (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet.36, 449–451.10.1038/ng1341Search in Google Scholar PubMed
Züchner, S., De Jonghe, P., Jordanova, A., Claeys, K.G., Guergueltcheva, V., Cherninkova, S., Hamilton, S.R., Van Stavern, G., Krajewski, K.M., Stajich, J., et al. (2006). Axonal neuropathy with optic atrophy is caused by mutations in Mitofusin 2. Ann. Neurol.59, 276–281.10.1002/ana.20797Search in Google Scholar PubMed
©2006 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Janus-faced role of endothelial NO synthase in vascular disease: uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal
- Leucine aminopeptidases: diversity in structure and function
- Endogenous anti-inflammatory substances, inter-α-inhibitor and bikunin
- Mitochondrial morphology and distribution in mammalian cells
- Heterogeneity in the cysteine protease inhibitor clitocypin gene family
- Mutations in the inter-SH2 domain of the regulatory subunit of phosphoinositide 3-kinase: effects on catalytic subunit binding and holoenzyme function
- Evaluation of Bacillus anthracis thymidine kinase as a potential target for the development of antibacterial nucleoside analogs
- The human malaria parasite Plasmodium falciparum expresses an atypical N-terminally extended pyrophosphokinase with specificity for thiamine
- Fes1p acts as a nucleotide exchange factor for the ribosome-associated molecular chaperone Ssb1p
- Detailed analysis of MIA protein by mutagenesis
- The role of human tissue kallikreins 7 and 8 in intracranial malignancies
- Prognostic significance of the expression of SR-A1, encoding a novel SR-related CTD-associated factor, in breast cancer
- Suppression of TNF-α production by S-adenosylmethionine in human mononuclear leukocytes is not mediated by polyamines
- Topotecan and methotrexate alter expression of the apoptosis-related genes BCL2, FAS and BCL2L12 in leukemic HL-60 cells
- Two secreted cystatins of the soft tick Ornithodoros moubata: differential expression pattern and inhibitory specificity
- Acknowledgment
- Contents Biological Chemistry Volume 387, 2006
- Author Index
- Subject Index
Articles in the same Issue
- Janus-faced role of endothelial NO synthase in vascular disease: uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal
- Leucine aminopeptidases: diversity in structure and function
- Endogenous anti-inflammatory substances, inter-α-inhibitor and bikunin
- Mitochondrial morphology and distribution in mammalian cells
- Heterogeneity in the cysteine protease inhibitor clitocypin gene family
- Mutations in the inter-SH2 domain of the regulatory subunit of phosphoinositide 3-kinase: effects on catalytic subunit binding and holoenzyme function
- Evaluation of Bacillus anthracis thymidine kinase as a potential target for the development of antibacterial nucleoside analogs
- The human malaria parasite Plasmodium falciparum expresses an atypical N-terminally extended pyrophosphokinase with specificity for thiamine
- Fes1p acts as a nucleotide exchange factor for the ribosome-associated molecular chaperone Ssb1p
- Detailed analysis of MIA protein by mutagenesis
- The role of human tissue kallikreins 7 and 8 in intracranial malignancies
- Prognostic significance of the expression of SR-A1, encoding a novel SR-related CTD-associated factor, in breast cancer
- Suppression of TNF-α production by S-adenosylmethionine in human mononuclear leukocytes is not mediated by polyamines
- Topotecan and methotrexate alter expression of the apoptosis-related genes BCL2, FAS and BCL2L12 in leukemic HL-60 cells
- Two secreted cystatins of the soft tick Ornithodoros moubata: differential expression pattern and inhibitory specificity
- Acknowledgment
- Contents Biological Chemistry Volume 387, 2006
- Author Index
- Subject Index