Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress
-
Helmut K. Seitz
Abstract
Hepatocellular cancer is the fifth most frequent cancer in men and the eighth in women worldwide. Established risk factors are chronic hepatitis B and C infection, chronic heavy alcohol consumption, obesity and type 2 diabetes, tobacco use, use of oral contraceptives, and aflatoxin-contaminated food. Almost 90% of all hepatocellular carcinomas develop in cirrhotic livers. In Western countries, attributable risks are highest for cirrhosis due to chronic alcohol abuse and viral hepatitis B and C infection. Among those with alcoholic cirrhosis, the annual incidence of hepatocellular cancer is 1–2%. An important mechanism implicated in alcohol-related hepatocarcinogenesis is oxidative stress from alcohol metabolism, inflammation, and increased iron storage. Ethanol-induced cytochrome P-450 2E1 produces various reactive oxygen species, leading to the formation of lipid peroxides such as 4-hydroxy-nonenal. Furthermore, alcohol impairs the antioxidant defense system, resulting in mitochondrial damage and apoptosis. Chronic alcohol exposure elicits hepatocyte hyperregeneration due to the activation of survival factors and interference with retinoid metabolism. Direct DNA damage results from acetaldehyde, which can bind to DNA, inhibit DNA repair systems, and lead to the formation of carcinogenic exocyclic DNA etheno adducts. Finally, chronic alcohol abuse interferes with methyl group transfer and may thereby alter gene expression.
References
Albano, E. (2002). Free radicals and alcohol-induced liver injury. In: Ethanol and the Liver, C.D.I.N. Sherman, V.R. Preedy and R.R. Watson, eds. (London, UK: Taylor and Francis), pp. 153–190.Suche in Google Scholar
Albano, E., Clot, P., Morimoto, M., Tomasi, A., and Dianzani, M.U. (1993). Evidence for the covalent binding of hydroxyethyl radicals to rat liver microsomal proteins. Alcohol Alcohol.28, 453–459.Suche in Google Scholar
Aleynik, S.I., Leo, M.A., Aleynik, M.K., and Lieber, C.S. (1998). Increased circulating products of lipid peroxidation in patients with alcoholic liver disease. Alcohol. Clin. Exp. Res.22, 192–196.10.1111/j.1530-0277.1998.tb03637.xSuche in Google Scholar
Arteel, G.E. (2003). Oxidant and antioxidant in alcohol-induced liver disease. Gastroenterology124, 778–790.10.1053/gast.2003.50087Suche in Google Scholar
Bailey, S.M. and Cunningham, C.C. (2002). Contribution of mitochondria to oxidative stress associated with alcohol liver disease. Free Radic. Biol. Med.32, 11–16.10.1016/S0891-5849(01)00769-9Suche in Google Scholar
Barak, A.J., Beckenhauer, H.C., Hidiroglou, N., Camilo, M.E., Selhub, J., and Tuma, D.J. (1993). The relationship of ethanol feeding to the methyl folate trap. Alcohol10, 495–497.10.1016/0741-8329(93)90072-VSuche in Google Scholar
Bardag-Gorce, F., Yuan, Q.X., Li, J., French B.A., Fang, C., Ingelmann-Sundberg, M., and French, S.W. (2000). The effect of ethanol induced cytochrome P-45o2E1 on the inhibition of proteasome activity by alcohol. Biochem. Biophys. Res. Commun.279, 23–29.10.1006/bbrc.2000.3889Suche in Google Scholar
Bartsch, H. and Nair, J. (2004). Oxidative stress and lipid peroxidation-derived DNA-lesions in inflammation driven carcinogenesis. Cancer Detect. Prev.28, 385–391.10.1016/j.cdp.2004.07.004Suche in Google Scholar
Bautista, A.P. (2002). Neutrophilic infiltration in alcoholic hepatitis. Alcohol27, 17–21.10.1016/S0741-8329(02)00206-9Suche in Google Scholar
Beckmann, J.S. and Koppenol, W.H. (1996). Nitric oxide, superoxide and peroxynitrite: the good, the bad and the ugly. Am. J. Physiol.271, C1424–C1437.10.1152/ajpcell.1996.271.5.C1424Suche in Google Scholar
Becker, U., Dies, A., and Sorensen, T.I. (1996). Prediction of risk of liver disease by alcohol intake, sex, and age: prospective population study. Hepatology23, 1025–1029.10.1002/hep.510230513Suche in Google Scholar
Benvegnu, L., Fattovich, G., Noventa, F., Tremolada, F., Chemello, L., Cecchetto, A., and Alberti, A. (1994). Concurrent hepatitis B and C virus infection and risk of hepatocellular carcinoma in cirrhosis. Cancer74, 2442–2448.10.1002/1097-0142(19941101)74:9<2442::AID-CNCR2820740909>3.0.CO;2-#Suche in Google Scholar
Bluteau, O., Beaudoin, J.C., Pasturaus, P., Belghiti, J., Franco, D., Bioulac-Sage, P., Laurent-Puig, P., and Zacman-Rossi, J. (2002). Specific association between alcohol intake, high grade of differentiation and 4q34-q35 deletions in hepatocellular carcinomas identified by high resolution allelotyping. Oncogene21, 1225–32.10.1038/sj.onc.1205197Suche in Google Scholar
Bolondi, L., Sofia, S., Siringo, S., Gaiani, S., Casali, A., Zironi, G., Piscaglia, F., Gramantieri, L., Zanetti, M., and Sherman, M. (2001). Surveillance programme of cirrhotic patients for early diagnosis and treatment of hepatocellular carcinoma: a cost effectiveness analysis. Gut48, 251–259.10.1136/gut.48.2.251Suche in Google Scholar
Borzio, M., Bruno, S., Roncalli, M., Colloredo Meis, G., Ramella, G., Borio, F., Leandro, G., Servida, E., and Podda, M. (1995). Liver cell dysplasia is a major risk factor for hepatocellular carcinoma in cirrhosis: a prospective study. Gastroenterology108, 812–817.10.1016/0016-5085(95)90455-7Suche in Google Scholar
Borzio, M., Fargion, S., Borzio, F., Fracanzani, A.L., Croce, A.M. Stroffolini, T., Oldani, S., Cotechini, R., and Roncalli, M. (2003). Impact of large regenerative low-grade and high-grade dysplastic nodules in hepatocellular carcinoma development. J. Hepatol.39, 208–214.10.1016/S0168-8278(03)00190-9Suche in Google Scholar
Bosch, F.X., Ribes, J., and Borras, J. (1999). Epidemiology of primary liver cancer. Sem. Liver Dis.19, 271–285.10.1055/s-2007-1007117Suche in Google Scholar PubMed
Bosch, F.X., Ribes, J., Diaz, M., and Cléries, R. (2004). Primary liver cancer: worldwide incidence and trends. Gastroenterology127, S5–16.10.1053/j.gastro.2004.09.011Suche in Google Scholar PubMed
Bradford, B.U., Kona, H., Isayama, F., Kosyk, O., Wheeler, M.D., Akiyama, T.E., Bleye, L., Krausz, K.W., Gonzalez, F.J., Koop, D.R., and Rusyn, I. (2005). Cytochrome P-450 CYP2E1, but not nicotinamide adenine dinucleotide phosphate oxidase is required for ethanol-induced oxidative DNA damage in rodent liver. Hepatology41, 336–344.10.1002/hep.20532Suche in Google Scholar PubMed
Bréchot, C. (2004). Pathogenesis of hepatitis B virus-related hepatocellular carcinoma: old and new paradigms. Gastroenterology127, S56–S61.10.1053/j.gastro.2004.09.016Suche in Google Scholar PubMed
Brooks, P.J. and Theruvathu, J.A. (2005). DNA adducts from acetaldehyde: implications for alcohol-related carcinogenesis. Alcohol35, 187–193.10.1016/j.alcohol.2005.03.009Suche in Google Scholar PubMed
Caro, A.A. and Cederbaum, A.I. (2004). Oxidative stress, toxicology and pharmacology of CYP2E1. Annu. Rev. Pharmacol. Toxicol.44, 27–42.10.1146/annurev.pharmtox.44.101802.121704Suche in Google Scholar PubMed
Chambon, P. (1996). A decade of molecular biology of retinoic acid receptors. FASEB J.10, 940–954.10.1096/fasebj.10.9.8801176Suche in Google Scholar
Chamulitrat, W. and Spitzer, J.J. (1996). Nitric oxide and liver injury in alcohol fed rats after lipopolysaccharide administration. Alcohol. Clin. Exp. Res.20, 1065–1070.10.1111/j.1530-0277.1996.tb01947.xSuche in Google Scholar
Chiu, R., Boyle, W.J., Meek, J., Smeal, T., Hunter, T., and Karin, M. (1988) c-fos protein interacts with c-jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell54, 541–552.10.1016/0092-8674(88)90076-1Suche in Google Scholar
Choi, S.W., Stickel, F., Baik, H.W., Kim, Y.I., Seitz, H.K., and Maison, J.B. (1999). Chronic alcohol consumption induces genomic but not p53 specific DNA hypomethylation in rat colon. J. Nutr.129, 1945–1950.10.1093/jn/129.11.1945Suche in Google Scholar
Chung, J., Liu, C., Smith, D.E., Seitz, H.K., Russel, R.M., and Wang, X.D. (2001). Restoration of retinoic acid concentration suppresses ethanol induced c-jun overexpression and hepatocyte hyperproliferation in rat liver. Carcinogenesis22, 1213–1219.10.1093/carcin/22.8.1213Suche in Google Scholar
Clot, P., Bellomo, G., Tabone, M., Arico, S., and Albano, E. (1995). Detection of antibodies against proteins modified by hydroxyethyl free radicals in patients with alcoholic cirrhosis. Gastroenterology108, 210–207.10.1016/0016-5085(95)90025-XSuche in Google Scholar
Clot, P., Albano, E., Elliasson, E., Tabone, M., Arico, S., Israel, Y., Moncada, Y., and Ingelman-Sundberg, M. (1996). Cytochrome P4502E1 hydroxyethyl radical adducts as the major antigenic determinant for autoantibody formation among alcoholics. Gastroenterology111, 206–216.10.1053/gast.1996.v111.pm8698201Suche in Google Scholar
Counts, J.L. and Goodman, J.I. (1995). Alterations in DNA methylation play a variety of roles in carcinogenesis. Cell83, 13–15.10.1016/0092-8674(95)90228-7Suche in Google Scholar
Dellarco, V.L. (1988). A mutagenicity assessment of acetaldehyde. Mutat. Res.195, 1–20.10.1016/0165-1110(88)90013-9Suche in Google Scholar
Denissenko, M.F., Koudriakova, T.B., Smith, L., O'Connor, T.R., Riggs, A.D., and Pfeifer, G.P. (1998). The p53 codon 249 mutational hotspot in hepatocellular carcinoma is not related to selective formation or persistence of aflatoxin B1 adducts. Oncogene17, 3007–3014.10.1038/sj.onc.1202214Suche in Google Scholar PubMed
Deutsche Hauptstelle für Suchtfragen (2003). Jahrbuch Sucht (Geesthacht, Germany: Neuland Verlagsgesellschaft mbH).Suche in Google Scholar
Donato, F., Tagger, A., Gelatti, U., Parrinello, G., Moffetta, P., Alberini, A., Decarli, A., Travisi, P., Ribero, M.L., Martelli, C., et al. (2002). Alcohol and hepatocellular carcinoma: the effect of lifetime intake and hepatitis virus infections in men and women. Am. J. Epidemiol.155, 323–331.10.1093/aje/155.4.323Suche in Google Scholar
Donato, M.F., Arosio, E., Del Ninno, E., Ronchi, G., Lampertico, P., Morabito, A., Balestrieri, M.R., and Colombo, M. (2001). High rates of hepatocellular carcinoma in cirrhotic patients with high liver cell proliferative activity. Hepatology34, 523–528.10.1053/jhep.2001.26820Suche in Google Scholar
Dupont, I., Lucas, D., Clot, P., Ménez, C., and Albano, E. (1998). Cytochrome P4502E1 inducibility and hydroxyethyl radical formation among alcoholics. J. Hepatol.28, 564–571.10.1016/S0168-8278(98)80279-1Suche in Google Scholar
El-Serag, H.B. (2004). Hepatocellular carcinoma: recent trends in the United States. Gastroenterology127, S27–S34.10.1053/j.gastro.2004.09.013Suche in Google Scholar PubMed
El-Serag, H.B. and Mason, A.C. (2000). Risk factors for the rising rates of primary liver cancer in the Untied States. Arch. Intern. Med.160, 3227–3230.10.1001/archinte.160.21.3227Suche in Google Scholar PubMed
Espina, N., Lima, V., Lieber, C.S., and Garro, A.J. (1988). In vitro and in vivo inhibitory effect of ethanol and acetaldehyde on O6-methylguanine transferase. Carcinogenesis9, 761–766.10.1093/carcin/9.5.761Suche in Google Scholar PubMed
Fang, J.L. and Vaca, C.E. (1997). Detection of DNA adducts of acetaldehyde in peripheral white blood cells of alcohol abusers. Carcinogenesis18, 627–632.10.1093/carcin/18.4.627Suche in Google Scholar PubMed
Fattovich, G., Stroffolini, T., Zagni, I., and Donato, F. (2004). Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology127,S35–S50.10.1053/j.gastro.2004.09.014Suche in Google Scholar PubMed
Ferlay, J., Bray, F., Pisani, P., and Parkin, D.M. (2001). Cancer Incidence, Mortality and Prevalence Worldwide. Version 1.0 (Lyon, France: IARC Press).Suche in Google Scholar
Fernandez-Checa, J.C. and Kaplowitz, N. (2005). Hepatic mitochondrial glutathione: transport and role in disease and toxicity. Toxicol. Appl. Pharmacol.204, 263–273.10.1016/j.taap.2004.10.001Suche in Google Scholar PubMed
Fernandez-Checa, J.C., Garcia-Ruiz, C., Ookhtens, M., and Kaplowitz, N. (1991). Impaired uptake of glutathione by hepatic mitochondria from ethanol fed rats. J. Clin. Invest.87, 397–405.10.1172/JCI115010Suche in Google Scholar PubMed PubMed Central
Frank, A., Seitz, H.K., Bartsch, H., Frank, N., and Nair, J. (2004). Immunohistochemical detection of 1,N6-ethenodeoxyadenosine in nuclei of human liver affected by diseases predisposing to hepatocarcinogenesis. Carcinogenesis25, 1027–1031.10.1093/carcin/bgh089Suche in Google Scholar
French, S., French, B., Dedes, J., Li, J., Barda-Gorce, F., and Nan, L. (2005). What is the Mallory body-forming cell phenotype? What is the relevance to hepatoma formation?Alcohol Alcohol.40 (Suppl. 1), i35–36.Suche in Google Scholar
Ganne-Carrié, N., Chastang, C., Chapel, F., Munc, C., Pateron, D., Sibony, M., Dèny, P., Trinchet, J.C., Callard, P., Guettier, C., and Beaugrand, M. (1996). Predictive score for the development of hepatocellular carcinoma and additional value of liver large cell dysplasia in Western patients with cirrhosis. Hepatology23, 1112–1118.10.1002/hep.510230527Suche in Google Scholar
Garcia-Ruiz, C., Colell, A., Paris, R., and Fernandez-Checa, J.C. (2000). Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release and caspase activation. FASEB J.14, 847–850.10.1096/fasebj.14.7.847Suche in Google Scholar
Garro, A.J., McBeth, D.L., Lima, V., and Lieber, C.S. (1991). Ethanol consumption inhibits fetal DNA methylation in mice: implication for the fetal alcohol syndrome. Alcohol. Clin. Exp. Res.15, 395–398.10.1111/j.1530-0277.1991.tb00536.xSuche in Google Scholar
Gloria, L., Cravo, M., Camilo, M.E., Rsende, M., Cardoso, J.N., Oliveira, A.G., Leitao, C.N., and Mira, F.C. (1997). Nutritional deficiencies in chronic alcoholics: relation to dietary intake and alcohol consumption. Am. J. Gastroenterol.92, 485–489.Suche in Google Scholar
Gouillon, Z., Lucas, D., Li, J., Hagbjork, A.L., French, B.A., Fu, P., Fang, C., Ingelman-Sundberg, M., Donohue, T.M., and French, S.W. (2000). Inhibition of ethanol-induced liver disease in the intragastric feeding rat model by chlormethiazole. Proc. Soc. Biol. Med.224, 302–308.10.1046/j.1525-1373.2000.22435.xSuche in Google Scholar
Grant, B., Harfort, T., Dawson, D., Chou, P., DuFour, M., and Pickering, R. (1994). Prevalence of DSM-IV alcohol abuse and dependence: United States, 1992. Alcohol Health Res. World18, 243–248.Suche in Google Scholar
Hassan, M.M., Hwang, L.Y., Hatten, C.J., Swaim, M., Li, D., Abbruzzese, J.L., Beasley, P., and Patt, Y.Z. (2002). Risk factors for hepatocellular carcinoma: synergism of alcohol with viral hepatitis and diabetes mellitus. Hepatology36, 1206–1213.10.1053/jhep.2002.36780Suche in Google Scholar
Helander, A. and Lindahl-Kiessling, K. (1991). Increased frequency of acetaldehyde-induced sister-chromatide exchanges in human lymphocytes treated with an aldehyde dehydrogenase inhibitor. Mutat. Res.264, 103–107.10.1016/0165-7992(91)90124-MSuche in Google Scholar
Hines, I.N. and Wheeler, M.D. (2004). Recent advances in alcoholic liver disease III. Role of the innate immune response in alcoholic hepatitis. Am. J. Physiol.287, G310–314.Suche in Google Scholar
Hoek, J.B., Cahill, A., and Pastorino, J.G. (2002). Alcohol and mitochondria: a dysfunctional relationship. Gastroenterology122, 2049–2063.10.1053/gast.2002.33613Suche in Google Scholar PubMed PubMed Central
Homann, N., Stickel, F., König, I.R., Jacobs, A., Junghanns, K., Benesova, M., Schuppan, D., Himsel, S., Zuber-Jerger, I., Hellerbrand, C., et al. (2006). Alcohol dehydrogenase 1C*1 allele is a genetic marker for alcohol associated cancer in heavy drinkers. Int. J. Cancer118, 1998–2002.10.1002/ijc.21583Suche in Google Scholar PubMed
Hu, W., Feng, Z., Eveleigh, J., Iyer, G., Pan, J., Amin, S., Chung, F.L., and Tang, M.S. (2002). The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hot spot in hepatocellular carcinoma. Carcinogenesis23, 1781–1789.10.1093/carcin/23.11.1781Suche in Google Scholar PubMed
Hui, A.M. and Makuuchi, M. (1999). Molecular basis of multistep hepatocarcinogenesis: genetic and epigenetic events. Scand. J. Gastroenterol.8, 737–742.Suche in Google Scholar
IARC (1999). Acetaldehyde IARC monographs on the evaluation of the carcinogenic risk to humans. Reevaluation of some organic chemicals, hydrazines and hydrogen peroxides. Lyon Int. Agency Res. Cancer 71, 319–335.Suche in Google Scholar
Iimuro, Y., Bradford, B.U., Yamashina, S., Rusyn, I., Nakagami, M., Enomoto, N., Kono, H., Frey, W., Forman, D., Brenner, D., and Thurman, R.G. (2000). The glutathione precursor l-2-oxothiazolidine-4-carboxylic acid protects against liver injury due to chronic enteral ethanol exposure in the rat. Hepatology31, 391–398.10.1002/hep.510310219Suche in Google Scholar
Inoué, H. and Seitz, H.K. (2001). Viruses and alcohol in the pathogenesis of primary hepatic carcinoma. Eur. J. Cancer Prev.10, 1–4.10.1097/00008469-200102000-00016Suche in Google Scholar
Iwata, N., Yamamoto, H., Sasaki, S., Itoh, F., Suzuki, H., Kikuchi, T., Kaneto, H., Iku, S., Ozeki, I., Karino, Y., et al. (2000). Frequent hypermethylation of CpG islands and loss of expression of the 14-3-3 σ gene in human hepatocellular carcinoma. Oncogene19, 5298–5302.10.1038/sj.onc.1203898Suche in Google Scholar
Jarvelainen, H.A., Fang, C., Ingelman-Sundberg, M., and Lindros, K.O. (1999). Effect of chronic coadministration of endotoxin and ethanol on rat liver pathology and proinflammatory and antiinflammatory cytokines. Hepatology29, 1503–1510.10.1002/hep.510290508Suche in Google Scholar
Kanai, Y., Hui, A.M., Sun, L., Ushijima, S., Sakramoto, M., Tsuda, H., and Hirohashi, S. (1999). DNA hypermethylation at the D17S5 locus and reduced HIC-1 mRNA expression are associated with hepatocarcinogenesis. Hepatology29, 703–709.10.1002/hep.510290338Suche in Google Scholar
Kanai, Y., Ushijima, S., Tsuda, H., Sakamoto, M., and Hirohashi, S. (2000). Aberrant DNA methylation precedes loss of heterozygosity on chromosome 16 in chronic hepatitis and liver cirrhosis. Cancer Lett.148, 73–80.10.1016/S0304-3835(99)00316-XSuche in Google Scholar
Kawase, T., Kato, S., and Lieber, C.S. (1989). Lipid peroxidation and antioxidant defense systems in rat liver after chronic ethanol feeding. Hepatology10, 815–821.10.1002/hep.1840100511Suche in Google Scholar PubMed
Ketcham, A.S., Wexler, H., and Mantel, N. (1963). Affects of alcohol in mouse neoplasia. Cancer Res.23, 667–670.Suche in Google Scholar
Kondo, Y., Kanai, Y., Sakamoto, M., Mizokami, M., Ueda, R., and Hirohashi, S. (2000). Genetic instability and aberrant DNA methylation in chronic hepatitis and cirrhosis – a comprehensive study of loss of heterozygosity and microsatellite instability at 39 loci and DNA hypermethylation on 8 CpG islands in microdissected specimens from patients with hepatocellular carcinoma. Hepatology32, 970–979.10.1053/jhep.2000.19797Suche in Google Scholar PubMed
Kowdley, K.V. (2004). Iron, hemochromatosis, and hepatocellular carcinoma. Gastroenterology127,S79–S86.10.1016/j.gastro.2004.09.019Suche in Google Scholar PubMed
Labadarios, D., Rossouw, J.E., McConnell J.B., Davis, M., and Williams, R. (1977). Vitamin B6 deficiency in chronic liver disease – evidence for increased degradation of pyridoxal-5-phosphate. Gut18, 23–27.10.1136/gut.18.1.23Suche in Google Scholar PubMed PubMed Central
Laurent-Puig, P., Legoix, P., Bluteau, O., Belghiti, J., Franco, D., Binot, F., Monges, G., Thomas, G., Bioulac-Sage, P., and Zucman-Rossi, J. (2001). Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology120, 1763–1773.10.1053/gast.2001.24798Suche in Google Scholar
Leo, M.A. and Lieber, C.S. (1982). Hepatic vitamin A depletion in alcoholic liver injury. N. Engl. J. Med.304, 597–600.10.1056/NEJM198209023071006Suche in Google Scholar
Leo, M.A. and Lieber, C.S. (1999). Alcohol, vitamin A, and beta-carotene: adverse interactions, including hepatotoxicity and carcinogenicity. Am. J. Clin. Nutr.69, 1071–1085.10.1093/ajcn/69.6.1071Suche in Google Scholar
Liang, T.J. and Heller, T. (2004). Pathogenesis of hepatitis C-associated hepatocellular carcinoma. Gastroenterology127,S62–S71.10.1053/j.gastro.2004.09.017Suche in Google Scholar
Lieber, C.S. (1994). Alcohol and the liver: 1994 update. Gastroenterology106, 1085–1105.10.1016/0016-5085(94)90772-2Suche in Google Scholar
Lieber, C.S., Casini, A., DeCarli, L.M., Kim, C.I., Lowe, N., Sasaki, R., and Leo, M.A. (1990). S-Adenosyl-l-methionine attenuates alcohol-induced liver injury in the baboon. Hepatology11, 165–172.10.1002/hep.1840110203Suche in Google Scholar PubMed
Lin, M.T., Juan, C.Y., Chang, K.J., Chen, W.J., Kuo, M.L. (2001). IL-6 inhibits apoptosis and retains oxidative DNA lesions in human gastric cancer AGS cells through up-regulation of anti-apoptotic gene mcl-1. Carcinogenesis22, 1947–1953.10.1093/carcin/22.12.1947Suche in Google Scholar PubMed
Liu, C., Russel, R., Seitz, H.K., and Wang, X.D. (2001). Ethanol-enhances retinoic acid metabolism into metabolites in rat liver via induction of cytochrome P-4502E1. Gastroenterology120, 179–189.10.1053/gast.2001.20877Suche in Google Scholar PubMed
Lu, S.C. and Mato, J.M. (2005). Role of methionine adenosyltransferase and S-adenoxylmethionine in alcohol-associated liver cancer. Alcohol35, 227–234.10.1016/j.alcohol.2005.03.011Suche in Google Scholar PubMed
Lumeng, L. and Li, T.K. (1974). Vitamin B6 metabolism in chronic alcohol abuse. J. Clin. Invest.53, 693–704.10.1172/JCI107607Suche in Google Scholar PubMed PubMed Central
Marrogi, A.J., Khan, M.A., van Gijssel, H.E., Welsh, J.A., Rahim H., Demetris, A.J., Kowdley, K.V., Hussain, S.P., Nair, J., Bartsch, H., et al. (2001). Oxidative stress and p53 mutations in the carcinogenesis of iron overload-associated hepatocellular carcinoma. J. Natl. Cancer Inst.93, 1652–1655.10.1093/jnci/93.21.1652Suche in Google Scholar
Matsuda, T., Terashima, I., Matsumoto, Y., Yabushita, H., Matsui, S., and Shibutani, S. (1999). Effective utilization of N2-ethyl-2′-deoxyguanosine triphosphate during DNA synthesis catalyzed by mammalian replicative DNA polymerases. Biochemistry38, 929–935.10.1021/bi982134jSuche in Google Scholar
McKillop, I.H. and Schrum, L.W. (2005). Alcohol and liver cancer. Alcohol35, 195–203.10.1016/j.alcohol.2005.04.004Suche in Google Scholar
Miyakawa, H., Liu, J., Noguchi, O., Marumo, F., and Sato, C. (1996). Effect of alcohol drinking on gene expression of hepatic O6-methylguanine DNA methyltransferase in chronic liver diseases. Alcohol. Clin. Exp. Res.20, 297A–300A.10.1111/j.1530-0277.1996.tb01796.xSuche in Google Scholar
Moreno, F.S., Yu, T.S., Naves, M.M.V., Silveira, E.R., Oloris, S.C., daCosta, M.A.L., Dagli, M.L.Z., and Ong, T.P. (2002). Inhibitory effects of β-carotene and vitamin A during the progression phase of hepatocarcinogenesis involve inhibition of cell proliferation but not alterations in DNA methylation. Nutr. Cancer44, 80–88.10.1207/S15327914NC441_11Suche in Google Scholar
Morgan, K., French, S.W., and Morgan, T.R. (2002). Production of a cytochrome P-4502E1 transgenic mouse and initial evaluation of alcoholic liver damage. Hepatology36, 122–134.10.1053/jhep.2002.33720Suche in Google Scholar
Morgan, T.R., Mandayam, S., and Jamal, M.M. (2004). Alcohol and hepatocellular carcinoma. Gastroenetrology127, S87–S96.10.1053/j.gastro.2004.09.020Suche in Google Scholar
Muto, Y., Moriwaki, H., and Saito, A. (1999) Prevention of second primary tumours by an acyclic retinoid in patients with hepatocellular carcinoma. N. Engl. J. Med.340, 1046–1047.10.1056/NEJM199904013401315Suche in Google Scholar
Neuschwander-Tetri, B.A. and Caldwell, S.H. (2003). Nonalcoholic steatohepatitis: summary of an AASLD single topic conference. Hepatology37, 1202–1219.10.1053/jhep.2003.50193Suche in Google Scholar
Obe, G., Jonas, R., and Schmidt, S. (1986). Metabolism of ethanol in vitro produces a compound which induces sister-chromatid exchanges in human peripheral lymphocytes in vitro: acetaldehyde not ethanol is mutagenetic. Mutat. Res.174, 47–51.10.1016/0165-7992(86)90075-8Suche in Google Scholar
Ohnishi, K. (1992). Alcohol and hepatocellular cancer. In: Alcohol and Cancer, R.R. Watson, ed. (Boca Raton, FL, USA: CRC Press), pp. 179–202.Suche in Google Scholar
Oneta, C.M., Lieber, C.S., Li, J.J., Ruttimann, S., Schmid, B., Lattmann, J., Rosman, A.S., and Seitz, H.K. (2002). Dynamics of cytochrome P4502E1 activity in man: induction by ethanol and disappearance during withdrawal phase. J. Hepatol.36, 47–52.10.1016/S0168-8278(01)00223-9Suche in Google Scholar
Petersen, D.R. (2005). Alcohol, iron-associated oxidative stress, and cancer. Alcohol35, 243–249.10.1016/j.alcohol.2005.03.013Suche in Google Scholar
Pogribny, I.P., Basnakian, A.G., Miller, B.J., Lopatina, N.G., Poirier, L.A., and James, S.J. (1995). Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats. Cancer Res.55, 1894–1901.Suche in Google Scholar
Polavarapu, R., Spitz, D.R., Sim, J.E., Follansbee, M.H., Oberley, L.W., Rahemtulla, A., and Nanji, A.A. (1998). Increased lipid peroxidation and impaired antioxidant enzyme function is associated with pathological liver injury in experimental alcoholic liver disease in rats fed diets high in corn oil and fish oil. Hepatology27, 1317–1323.10.1002/hep.510270518Suche in Google Scholar
Pöschl, G. and Seitz, H.K. (2004). Alcohol and cancer. Alcohol39, 155–165.10.1093/alcalc/agh057Suche in Google Scholar
Ronis, M.J.J., Butura, A., Sampey B.P., Prior, R.L., Kotourian, S., Albano, E., Ingelman-Sundberg, M., Petersen, D.R., and Badger, T.M. (2005). Effects of N-acetyl cysteine on ethanol-induced hepatotoxicity in rats fed via total enteral nutrition. Free Radic. Biol. Med.39, 619–630.10.1016/j.freeradbiomed.2005.04.011Suche in Google Scholar
Ross, R.K., Yuan, J.M., Yu, M.C., Wogan, G.N., Quian, G.S., Tu, J.T., Groopman, J.D., Gao, Y.T., and Henderson, B.E. (1992). Urinary aflatoxin biomarkers and risk of hepatocellular carcinoma. Lancet339, 943–946.10.1016/0140-6736(92)91528-GSuche in Google Scholar
Rouacht, H., Fattaccioli, V., Gentil, M., French, S.W., Morimoto, M., and Nordmann, R. (1997). Effect of chronic ethanol feeling on lipid peroxidation and protein oxidation in relation to liver pathology. Hepatology25, 351–355.10.1002/hep.510250216Suche in Google Scholar
Rouault, T.A. (2003). Hepatic iron overload in alcoholic liver disease: why does it occur and what is its role in pathogenesis?Alcohol30, 103–106.10.1016/S0741-8329(03)00102-2Suche in Google Scholar
Savage, D. and Lindenbaum, J. (1986). Anaemia in alcoholics. Medicine56, 322–328.Suche in Google Scholar
Seitz, H.K. (2000). Alcohol and retinoid metabolism. Gut47, 748–750.10.1136/gut.47.6.748Suche in Google Scholar PubMed PubMed Central
Seitz, H.K. and Osswald, B. (1992). Effect of ethanol on procarcinogen activation. In: Alcohol and Cancer, R.R. Watson, ed. (Boca Raton, FL, USA: CRC Press), pp. 55–72.Suche in Google Scholar
Seitz, H.K. and Suter, P.M. (2002). Ethanol toxicity and nutritional status. In: Nutritional Toxicology, 2nd Edition, F.N. Cotsones and M.A. McKay, eds. (London, New York: Taylor and Francis), pp. 122–154.Suche in Google Scholar
Seitz, H.K., Matsusaki, S., Yokoyama, A., Homann, N., Vakevainen, S., and Wang, X.D. (2001). Alcohol and cancer. Alcohol. Clin. Exp. Res.25, 137–143.10.1111/j.1530-0277.2001.tb02388.xSuche in Google Scholar
Shen, L., Fang, J., Qiu, D., Zhang, T., Yang, J., Chen, S., and Xiao, S. (1998). Correlation between DNA methylation and pathological changes in human hepatocellular carcinoma. Hepatogastroenterology45, 1753–1759.Suche in Google Scholar
Simanowski, U.A., Suter, P., Russell, R.M., Heller, M., Waldherr, R., Ward, R., Peters, T.J., Smith, D., and Seitz, H.K. (1994). Enhancement of ethanol induced rectal mucosal hyperregeneration with age in F-344 rats. Gut35, 1102–1106.10.1136/gut.35.8.1102Suche in Google Scholar
Smela, M.E., Hamm, M.L., Henderson, P.T., Harris, C.M., Harris, T.M., and Essigmann, J.M. (2002). The aflatoxin B1 formamidopyrimidine adduct plays a major role in causing the types of mutations observed in human hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA99, 6655–6600.10.1073/pnas.102167699Suche in Google Scholar
Speisky, H., MacDonald, A., Giles, G., Orrego, H., and Israel, Y. (1985). Increased loss and decreased synthesis of hepatic glutathione after acute ethanol administration. Turnover studies. Biochem. J.225, 565–572.10.1042/bj2250565Suche in Google Scholar
Stickel, F. and Österreicher, C.H. (2006). Genetic polymorphisms in alcoholic liver disease. Alcohol Alcohol., in press.10.1093/alcalc/agl011Suche in Google Scholar
Stickel, F. and Seitz, H.K. (2004). Ethanol and methyl transfer: its role in liver disease and hepatocarcinogenesis. In: Nutrition and Alcohol: Linking Nutrient Interactions and Dietary Intake, R.R. Watson and V.R. Preedy, eds. (Boca Raton, FL, USA: CRC Press), pp. 57–72.Suche in Google Scholar
Stickel, F., Choi, S.W., Kim, Y.I., Bagley, P.J., Seitz, H.K., Russell, R.M., Sellhub, J., and Mason, J.B. (2000). Effect of chronic alcohol consumption on total plasma homocysteine level in rats. Alcohol. Clin. Exp. Res.24,259–264.10.1111/j.1530-0277.2000.tb04606.xSuche in Google Scholar
Stickel, F., Schuppan, D., Hahn, E.G., and Seitz, H.K. (2002). Cocarcinogenic effects of alcohol in hepatocarcinogenesis. Gut51, 132–139.10.1136/gut.51.1.132Suche in Google Scholar
Tagger, A., Donato, F., Ribero, M.L., Chiesa, R., Portera, G., Gelatti, U., Alberini, A., Fasola, M., Moffetta, P., and Nardi, G. (1999). Case control study on hepatitis C virus (HCV) as a risk factor for hepatocellular carcinoma: the role of HCV genotypes and the synergism with hepatitis B virus and alcohol. Brescia HCC study. Int. J. Cancer81, 695–699.10.1002/(SICI)1097-0215(19990531)81:5<695::AID-IJC4>3.0.CO;2-WSuche in Google Scholar
Tarao, K., Rino, Y., Ohkawa, S., Shimizu, A., Tamai, S., Miyakawa, K., Aoki, H., Imada, T., Shindo, K., Okamoto, N., and Totsuka, S. (1999). Association between high serum alanine aminotransferase levels and more rapid development and higher rate of incidence of hepatocellular carcinoma in patients with hepatitis C virus-associated cirrhosis. Cancer86, 589–595.10.1002/(SICI)1097-0142(19990815)86:4<589::AID-CNCR7>3.0.CO;2-KSuche in Google Scholar
Thurman, R.G. (1998). Alcoholic liver injury involves activation of Kupffer cells by endotoxins. Am. J. Physiol.275, G605–G611.10.1152/ajpgi.1998.275.4.G605Suche in Google Scholar
Trerè, D., Borio, M., Morabito, A., Borio, F., Roncalli, M., and Derenzini, M. (2003). Nucleolar hypertrophy correlates with hepatocellular carcinoma development in cirrhosis due to HBV infection. Hepatology37, 72–78.10.1053/jhep.2003.50039Suche in Google Scholar
Trimble, K.C., Molloy, A.M., Scott, J.M., and Weir, D.G. (1993). The effect of ethanol on one-carbon metabolism: increased methionine catabolism and lipotrope methyl-group wastage. Hepatology18, 984–989.10.1002/hep.1840180433Suche in Google Scholar PubMed
Tsukamoto, H., Lin, M., Ohata, M., Giulivi, C., French, S.W., and Brittenham, G. (1999). Iron primes hepatic macrophages for NF-κB activation in alcoholic liver injury. Am. J. Physiol.277, G1240–G1250.10.1152/ajpgi.1999.277.6.G1240Suche in Google Scholar PubMed
Uesugi, T., Froh, M., Arteel, G.E., Bradford, B.U., and Thurman, R.G. (2001). Toll-like receptor 4 is involved in the mechanism of early alcohol induced liver injury in mice. Hepatology34, 101–108.10.1053/jhep.2001.25350Suche in Google Scholar PubMed
Urbaschek, R., McCuskey, R.S., Rudi, V., Becker, K.P., Stickel, F., Urbaschek, B., and Seitz, H.K. (2001). Endotoxin, endotoxin-neutralizing capacity, sCD14, sICAM-1, and cytokines in patients with various degrees of alcoholic liver disease. Alcohol. Clin. Exp. Res.25, 261–268.10.1111/j.1530-0277.2001.tb02207.xSuche in Google Scholar
Wainfan, E. and Poirier, L.A. (1992). Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res.52 (Suppl. 7), 2071–2077.Suche in Google Scholar
Wainfan, E., Dizik, M., Stender, M., and Christman, J.K. (1989). Rapid appearance of hypomethylated DNA in livers of rats fed cancer-promoting, methyl-deficient diets. Cancer Res.49, 4094–4097.Suche in Google Scholar
Wajant, H., Pfizenmaier, K., and Scheurich, P. (2003). Tumor necrosis factor signaling. Cell Death Differ.10, 45–65.10.1038/sj.cdd.4401189Suche in Google Scholar PubMed
Wang, D, Liu, C., and Chung, J. (1998). Chronic alcohol intake reduces retinoic acid concentration and enhances AP-1 (c-jun and c-fos) expression in rat liver. Hepatology28, 744–750.10.1002/hep.510280321Suche in Google Scholar PubMed
Wang, X.-D. (2005). Alcohol, vitamin A, and cancer. Alcohol35, 251–258.10.1016/j.alcohol.2005.04.006Suche in Google Scholar PubMed
Yin, M., Bradford, B.U., Wheeler, M.D., Uesugi, T., Froh, M., Goyert, S.M., and Thurman, R.G. (2001). Reduced early alcohol induced liver injury in CD 14 deficient mice. J. Immunol.166, 4737–4742.10.4049/jimmunol.166.7.4737Suche in Google Scholar PubMed
Yokoyama, A., Muramatsu, T., Ohmori, T., Yokoyama, T., Okuyama, K., Takahashi, H., Hasegawa, Y., Higuchi, S., Maruyama, K., Shirakura, K., and Ishii, H. (1998). Alcohol-related cancers and aldehydrogenase-2 in Japanese alcoholics. Carcinogenesis19, 1383–1387.10.1093/carcin/19.8.1383Suche in Google Scholar PubMed
Yu, M.C. and Yuan, J.M. (2004). Environmental factors and risk of hepatocellular carcinoma. Gastroenterology127, S72–S78.10.1016/j.gastro.2004.09.018Suche in Google Scholar PubMed
Yu, M.W., Hsieh, H.H., Pan, W.H., Yang, C.S., and Chen, C.J. (1995). Vegetable consumption, serum retinol level and risk of hepatocellular carcinoma. Cancer Res.55, 1301–1305.Suche in Google Scholar
Yu, M.W., Chiu, Y.H., Chiang, Y.C., Chen, C.H., Lee, T.H., Santella, R.M., Chern, H.D., Liaw, Y.F., and Chen, C.J. (1999). Plasma carotenoids, glutathione-S-transferase M1 and T1 genetic polymorphisms and risk of hepatocellular carcinoma: independent and interactive effects. Am. J. Epidemiol.149, 621–629.10.1093/oxfordjournals.aje.a009862Suche in Google Scholar PubMed
Zapisek, W.F., Cronin, G.M., Lyn-Cook, B.D., and Poirier, L.A. (1992). The onset of oncogene hypomethylation in the livers of rats fed methyl-deficient, amino acid-defined diets. Carcinogenesis13, 1869–1872.10.1093/carcin/13.10.1869Suche in Google Scholar PubMed
©2006 by Walter de Gruyter Berlin New York
Artikel in diesem Heft
- Highlight: chronic oxidative stress and cancer
- Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress
- Does Helicobacter pylori cause gastric cancer via oxidative stress?
- Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis
- Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids
- Concomitant suppression of hyperlipidemia and intestinal polyp formation by increasing lipoprotein lipase activity in Apc-deficient mice
- Cancer-preventive anti-oxidants that attenuate free radical generation by inflammatory cells
- Evidence for attenuated cellular 8-oxo-7,8-dihydro-2′-deoxyguanosine removal in cancer patients
- The roles of ATP in the dynamics of the actin filaments of the cytoskeleton
- Chiral distinction between the enantiomers of bicyclic alcohols by UDP-glucuronosyltransferases 2B7 and 2B17
- A structural model of 20S immunoproteasomes: effect of LMP2 codon 60 polymorphism on expression, activity, intracellular localisation and insight into the regulatory mechanisms
- Role of the kinin B1 receptor in insulin homeostasis and pancreatic islet function
- Comparative proteomic analysis of neoplastic and non-neoplastic germ cell tissue
- BID, an interaction partner of protein kinase CK2α
- Monomeric and dimeric GDF-5 show equal type I receptor binding and oligomerization capability and have the same biological activity
- Novel ketomethylene inhibitors of angiotensin I-converting enzyme (ACE): inhibition and molecular modelling
- Identification of trypsin I as a candidate for influenza A virus and Sendai virus envelope glycoprotein processing protease in rat brain
- A fluorescence assay for rapid detection of ligand binding affinity to HIV-1 gp41
Artikel in diesem Heft
- Highlight: chronic oxidative stress and cancer
- Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress
- Does Helicobacter pylori cause gastric cancer via oxidative stress?
- Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis
- Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids
- Concomitant suppression of hyperlipidemia and intestinal polyp formation by increasing lipoprotein lipase activity in Apc-deficient mice
- Cancer-preventive anti-oxidants that attenuate free radical generation by inflammatory cells
- Evidence for attenuated cellular 8-oxo-7,8-dihydro-2′-deoxyguanosine removal in cancer patients
- The roles of ATP in the dynamics of the actin filaments of the cytoskeleton
- Chiral distinction between the enantiomers of bicyclic alcohols by UDP-glucuronosyltransferases 2B7 and 2B17
- A structural model of 20S immunoproteasomes: effect of LMP2 codon 60 polymorphism on expression, activity, intracellular localisation and insight into the regulatory mechanisms
- Role of the kinin B1 receptor in insulin homeostasis and pancreatic islet function
- Comparative proteomic analysis of neoplastic and non-neoplastic germ cell tissue
- BID, an interaction partner of protein kinase CK2α
- Monomeric and dimeric GDF-5 show equal type I receptor binding and oligomerization capability and have the same biological activity
- Novel ketomethylene inhibitors of angiotensin I-converting enzyme (ACE): inhibition and molecular modelling
- Identification of trypsin I as a candidate for influenza A virus and Sendai virus envelope glycoprotein processing protease in rat brain
- A fluorescence assay for rapid detection of ligand binding affinity to HIV-1 gp41