Startseite Truncated PrPc in mammalian brain: interspecies variation and location in membrane rafts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Truncated PrPc in mammalian brain: interspecies variation and location in membrane rafts

  • Isabelle Laffont-Proust , Raymonde Hässig , Stéphane Haïk , Stéphanie Simon , Jacques Grassi , Caroline Fonta , Baptiste A. Faucheux und Kenneth L. Moya
Veröffentlicht/Copyright: 17. März 2006
Biological Chemistry
Aus der Zeitschrift Band 387 Heft 3

Abstract

A key molecular event in prion diseases is the conversion of cellular prion protein (PrPc) into an abnormal misfolded conformer (PrPsc). The PrPc N-terminal domain plays a central role in PrPc functions and in prion propagation. Because mammalian PrPc is found as a full-length and N-terminally truncated form, we examined the presence and amount of PrPc C-terminal fragment in the brain of different species. We found important variations between primates and rodents. In addition, our data show that the PrPc fragment is present in detergent-resistant raft domains, a membrane domain of critical importance for PrPc functions and its conversion into PrPsc.

:

Corresponding author

References

Brown, D.R. (2003). Prion protein expression modulates neuronal copper content. J. Neurochem.87, 377–385.10.1046/j.1471-4159.2003.02046.xSuche in Google Scholar PubMed

Brown, D.R., Qin, K., Herms, J.W., Madlung, A., Manson, J., Strome, R., Fraser, P.E., Kruck, T., von Bohlen, A., Schulz-Schaeffer, W., et al. (1997). The cellular prion protein binds copper in vivo. Nature390, 684–687.10.1038/37783Suche in Google Scholar PubMed

Chen, S.G., Teplow, D.B., Parchi, P., Teller, J.K., Gambetti, P., and Autilio-Gambetti, L. (1995). Truncated forms of the human prion protein in normal brain and in prion diseases. J. Biol. Chem.270, 19173–19180.10.1074/jbc.270.32.19173Suche in Google Scholar PubMed

Demart, S., Fournier, J.G., Creminon, C., Frobert, Y., Lamoury, F., Marce, D., Lasmezas, C.I., Dormont, D., Grassi, J., and Deslys, J.P. (1999). New insight into abnormal prion protein using monoclonal antibodies. Biochem. Biophys. Res. Commun.265, 652–657.10.1006/bbrc.1999.1730Suche in Google Scholar PubMed

Edenhofer, F., Rieger, R., Famulok, M., Wendler, W., Weiss, S., and Winnacker, E.L. (1996). Prion protein PrPSc interacts with molecular chaperones of the Hsp60 family. J. Virol.70, 4724–4728.10.1128/jvi.70.7.4724-4728.1996Suche in Google Scholar

Flechsig, E., Shmerling, D., Hegyi, I., Raeber, A.J., Fischer, M., Cozzio A., von Mering, C., Aguzzi, A., and Weissmann, C. (2000). Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. Neuron27, 399–408.10.1016/S0896-6273(00)00046-5Suche in Google Scholar PubMed

Gauczynski, S., Peyrin, J.-M., Haik, S., Leucht, C., Hundt, C., Rieger, R., Krasemann, S., Deslys, J.P., Dormont, D., Lasmezas, C.I., and Weiss, S. (2001). The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for cellular prion protein. EMBO J.20, 5863–5875.10.1093/emboj/20.21.5863Suche in Google Scholar PubMed PubMed Central

Hugel, B., Martinez, M.C., Kunzelmann, C., Blattler, T., Aguzzi, A., and Freyssinet, J.M. (2004). Modulation of signal transduction through the cellular prion protein is linked to its incorporation in lipid rafts. Cell. Mol. Life Sci.61, 2998–3007.10.1007/s00018-004-4318-2Suche in Google Scholar PubMed

Hundt, C., Peyrin, J.M., Haïk, S., Gauczynski, S., Leucht, C., Rieger R., Riley, M.L., Deslys, J.P., Dormont, D., Lasmezas, C.I., and Weiss, S. (2001). Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO J.20, 5876–5886.10.1093/emboj/20.21.5876Suche in Google Scholar PubMed PubMed Central

Korte, S., Vassallo, N., Kramer, M.L., Kretzschmar, H.A., and Herms, J. (2003). Modulation of L-type voltage-gated calcium channels by recombinant prion protein. J. Neurochem.87, 1037–1042.10.1046/j.1471-4159.2003.02080.xSuche in Google Scholar PubMed

Laffont-Proust, I., Faucheux, B.A., Hässig, R., Sazdovitch, V., Simon, S., Grassi, J., Hauw, J.-J., Moya, K.L., and Haïk, S. (2005). The N-terminal cleavage of cellular prion protein in the human brain. FEBS Lett.579, 6333–6337.10.1016/j.febslet.2005.10.013Suche in Google Scholar PubMed

Lawson, V.A., Priola, S.A., Wehrly, K., and Chesebro, B. (2001). N-Terminal truncation of prion protein affects both formation and conformation of abnormal protease resistant prion protein generated in vitro. J. Biol. Chem.276, 35265–35271.10.1074/jbc.M103799200Suche in Google Scholar PubMed

Madore, N., Smith, K.L., Graham, C.H., Jen, A., Brady, K., Hall, S., and Morris, R. (1999). Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J.18, 6917–6926.10.1093/emboj/18.24.6917Suche in Google Scholar PubMed PubMed Central

Maglio, L.E., Perez, M.F., Martins, V.R., Brentani, R.R., and Ramirez, O.A. (2004). Hippocampal synaptic plasticity in mice devoid of cellular prion protein. Mol. Brain Res.131, 58–64.10.1016/j.molbrainres.2004.08.004Suche in Google Scholar PubMed

Mouillet-Richard, S., Ermonval, M., Chebassier, C., Laplanche, J.L., Lehmann, S., Launay, J.M., and Kellermann, O. (2000). Signal transduction through prion protein. Science289, 1925–1928.10.1126/science.289.5486.1925Suche in Google Scholar PubMed

Moya, K.L., Hassig, R., Breen, K.C., Volland, H., and Di Giamberardino, L. (2005). Axonal transport of the cellular prion protein is increased during axon regeneration. J. Neurochem.92, 1044–1053.10.1111/j.1471-4159.2004.02940.xSuche in Google Scholar PubMed

Prusiner, S.B. (1998). Prions. Proc. Natl. Acad. Sci. USA95, 13363–13383.10.1073/pnas.95.23.13363Suche in Google Scholar PubMed PubMed Central

Shyng, S.L., Huber, M.T., and Harris, D.A. (1993). A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells. J. Biol. Chem.268, 15922–15928.10.1016/S0021-9258(18)82340-7Suche in Google Scholar

Shyng, S.-L., Lehmann, S., Moulder, K.L., and Harris, D.A. (1995). Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPC, in cultured cells. J. Biol. Chem.270, 30221–30229.10.1074/jbc.270.50.30221Suche in Google Scholar PubMed

Sunyach, C., Jen, A., Deng, J., Fitzgerald, K.T., Frobert, Y., Grassi J., McCaffrey, M.W., and Morris, R. (2003). The mechanism of internalization of glycosylphosphatidylinositol-anchored prion protein. EMBO J.22, 3591–3601.10.1093/emboj/cdg344Suche in Google Scholar PubMed PubMed Central

Taraboulos, A., Scott, M., Semenov, A., Avrahami, D., Laszlo, L., and Prusiner, S.B. (1995). Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J. Cell. Biol.129, 121–132.10.1083/jcb.129.1.121Suche in Google Scholar PubMed PubMed Central

Vassallo, N., Herms, J., Behrens, C., Krebs, B., Saeki, K., Onodera, T., Windl, O., and Kretzschmar, H.A. (2005). Activation of phosphatidylinositol 3-kinase by cellular prion protein and its role in cell survival. Biochem. Biophys. Res. Commun.332, 75–82.10.1016/j.bbrc.2005.04.099Suche in Google Scholar PubMed

Vincent, B., Paitel, E., Saftig, P., Frobert, Y., Hartmann, D., De Strooper, B., Grassi J., Lopez-Perez, E., and Checler, F. (2001). The disintegrins ADAM10 and TACE contribute to the constitutive and phorbol ester-regulated normal cleavage of the cellular prion protein. J. Biol. Chem.276, 37743–37746.10.1074/jbc.M105677200Suche in Google Scholar PubMed

Walmsley, A.R., Zeng, F., and Hooper, N.M. (2003). The N-terminal region of the prion protein ectodomain contains a lipid raft targeting determinant. J. Biol. Chem.278, 37241–37248.10.1074/jbc.M302036200Suche in Google Scholar PubMed

Weissmann, C., and Flechsig, I. (2003). PrP knock-out and PrP transgenic mice in prion research. Br. Med. Bull.66, 43–60.10.1093/bmb/66.1.43Suche in Google Scholar PubMed

Published Online: 2006-03-17
Published in Print: 2006-03-01

©2006 by Walter de Gruyter Berlin New York

Artikel in diesem Heft

  1. Striated domains: self-organizing ordered assemblies of transmembrane α-helical peptides and lipids in bilayers
  2. Evolution of kallikrein-related peptidases in mammals and identification of a genetic locus encoding potential regulatory inhibitors
  3. Rec A-independent homologous recombination induced by a putative fold-back tetraplex DNA
  4. Spontaneous DNA-DNA interaction of homologous duplexes and factors affecting the result of heteroduplex formation
  5. DNA end-joining driven by microhomologies catalyzed by nuclear extracts
  6. A role for transmembrane domains V and VI in ligand binding and maturation of the angiotensin II AT1 receptor
  7. The zinc finger protein ZNF297B interacts with BDP1, a subunit of TFIIIB
  8. Pressure- and temperature-induced unfolding studies: thermodynamics of core hydrophobicity and packing of ribonuclease A
  9. Truncated PrPc in mammalian brain: interspecies variation and location in membrane rafts
  10. Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: immune cell stimulation and biophysical characterization
  11. p190-RhoGAP as an integral component of the Tiam1/Rac1-induced downregulation of Rho
  12. Human plasma adenosine deaminase 2 is secreted by activated monocytes
  13. Inhibition of mRNA deadenylation and degradation by different types of cell stress
  14. Identification of calpain cleavage sites in the G1 cyclin-dependent kinase inhibitor p19INK4d
  15. Identification of candidate substrates for ectodomain shedding by the metalloprotease-disintegrin ADAM8
Heruntergeladen am 9.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2006.039/html?lang=de
Button zum nach oben scrollen