Startseite Imprinted small RNA genes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Imprinted small RNA genes

  • Hervé Seitz , Hélène Royo , Shau-Ping Lin , Neil Youngson , Anne C. Ferguson-Smith und Jérôme Cavaillé
Veröffentlicht/Copyright: 1. Juni 2005
Biological Chemistry
Aus der Zeitschrift Band 385 Heft 10

Abstract

Genomic imprinting is an epigenetic phenomenon that results in differential expression of both alleles, depending on their parent of origin. We have recently identified many imprinted small non-coding RNA genes belonging to the C/D RNA and microRNA gene families, both of which are usually known to play key roles in post-transcriptional metabolism of specific genes (e.g. C/D RNAs guide ribose methylation of target RNAs while microRNAs elicit either translational repression or RNA interference). Although the functional and evolutionary significance of this association between C/D RNA genes, microRNA genes and genomic imprinting is still highly elusive, these observations provide a framework for further analysis of the potential role of small non-coding RNAs in epigenetic control.

:

References

Bachellerie, J. P., Cavaille, J., and Hüttenhofer, A. (2002). The expanding snoRNA world. Biochimie84, 775–790.10.1016/S0300-9084(02)01402-5Suche in Google Scholar

Barlow, D. P. (1993). Methylation and imprinting: from host defense to gene regulation? Science260, 309–310.10.1126/science.8469984Suche in Google Scholar

Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297.10.1016/S0092-8674(04)00045-5Suche in Google Scholar

Bird, A. (1997). Does DNA methylation control transposition of selfish elements in the germline? Trends Genet.13, 469–472.Suche in Google Scholar

Burns, C. M., Chu, H., Rueter, S. M., Hutchinson, L. K., Canton, H., Sanders-Bush, E., and Emeson, R. B. (1997). Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature387, 303–308.10.1038/387303a0Suche in Google Scholar PubMed

Cavaille, J., and Bachellerie, J. P. (1998). SnoRNA-guided ribose methylation of rRNA: structural features of the guide RNA duplex influencing the extent of the reaction. Nucleic Acids Res.26, 1576–1587.10.1093/nar/26.7.1576Suche in Google Scholar PubMed PubMed Central

Cavaille, J., Buiting, K., Kiefmann, M., Lalande, M., Brannan, C. I., Horsthemke, B., Bachellerie, J. P., Brosius, J., and Hüttenhofer, A. (2000). Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc. Natl. Acad. Sci. USA97, 14311–14316.10.1073/pnas.250426397Suche in Google Scholar PubMed PubMed Central

Cavaille, J., Vitali, P., Basyuk, E., Hüttenhofer, A., and Bachellerie, J. P. (2001). A novel brain-specific box C/D small nucleolar RNA processed from tandemly repeated introns of a noncoding RNA gene in rats. J. Biol. Chem.276, 26374–26383.10.1074/jbc.M103544200Suche in Google Scholar PubMed

Cavaille, J., Seitz, H., Paulsen, M., Ferguson-Smith, A. C., and Bachellerie, J. P. (2002). Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region. Hum. Mol. Genet.11, 1527–1538.10.1093/hmg/11.13.1527Suche in Google Scholar PubMed

Chai, J. H., Locke, D. P., Ohta, T., Greally, J. M., and Nicholls, R. D. (2001). Retrotransposed genes such as Frat3 in the mouse chromosome 7C Prader-Willi syndrome region acquire the imprinted status of their insertion site. Mamm. Genome12, 813–821.10.1007/s00335-001-2083-1Suche in Google Scholar PubMed

Chamberlain, S. J., and Brannan, C. I. (2001). The Prader-Willi syndrome imprinting center activates the paternally expressed murine Ube3a antisense transcript but represses paternal Ube3a. Genomics73, 316–322.10.1006/geno.2001.6543Suche in Google Scholar PubMed

Charlier, C., Segers, K., Karim, L., Shay, T., Gyapay, G., Cockett, N., and Georges, M. (2001a). The callipyge mutation enhances the expression of coregulated imprinted genes in cis without affecting their imprinting status. Nat. Genet.27, 367–369.10.1038/86856Suche in Google Scholar

Charlier, C., Segers, K., Wagenaar, D., Karim, L., Berghmans, S., Jaillon, O., Shay, T., Weissenbach, J., Cockett, N., Gyapay, G., and Georges, M. (2001b). Human-ovine comparative sequencing of a 250–kb imprinted domain encompassing the callipyge (clpg) locus and identification of six imprinted transcripts: DLK1, DAT, GTL2, PEG11, antiPEG11, and MEG8. Genome Res.11, 850–862.10.1101/gr.172701Suche in Google Scholar

de los Santos, T., Schweizer, J., Rees, C. A., and Francke, U. (2000). Small evolutionarily conserved RNA, resembling C/D box small nucleolar RNA, is transcribed from PWCR1, a novel imprinted gene in the Prader-Willi deletion region, which Is highly expressed in brain. Am. J. Hum. Genet.67, 1067–1082.10.1086/303106Suche in Google Scholar

Freking, B. A., Murphy, S. K., Wylie, A. A., Rhodes, S. J., Keele, J. W., Leymaster, K. A., Jirtle, R. L., and Smith, T. P. (2002). Identification of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome Res.12, 1496–1506.10.1101/gr.571002Suche in Google Scholar

Gallagher, R. C., Pils, B., Albalwi, M., and Francke, U. (2002). Evidence for the role of PWCR1/HBII-85 C/D box small nucleolar RNAs in Prader-Willi syndrome. Am. J. Hum. Genet.71, 669–678.10.1086/342408Suche in Google Scholar

Georges, M., Charlier, C., and Cockett, N. (2003). The callipyge locus: evidence for the trans interaction of reciprocally imprinted genes. Trends Genet.19, 248–252.10.1016/S0168-9525(03)00082-9Suche in Google Scholar

Georgiades, P., Watkins, M., Surani, M. A., and Ferguson-Smith, A. C. (2000). Parental origin-specific developmental defects in mice with uniparental disomy for chromosome 12. Development127, 4719–4728.10.1242/dev.127.21.4719Suche in Google Scholar

Grewal, S. I., and Rice, J. C. (2004). Regulation of heterochromatin by histone methylation and small RNAs. Curr. Opin. Cell Biol.16, 230–238.10.1016/j.ceb.2004.04.002Suche in Google Scholar

Gribnau, J., Diderich, K., Pruzina, S., Calzolari, R., and Fraser, P. (2000). Intergenic transcription and developmental remodeling of chromatin subdomains in the human b-globin locus. Mol. Cell5, 377–386.10.1016/S1097-2765(00)80432-3Suche in Google Scholar

Hüttenhofer, A., Kiefmann, M., Meier-Ewert, S., O’Brien, J., Lehrach, H., Bachellerie, J. P., and Brosius, J. (2001). RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse. EMBO J.20, 2943–2953.10.1093/emboj/20.11.2943Suche in Google Scholar PubMed PubMed Central

Johnson, D. K., Stubbs, L. J., Culiat, C. T., Montgomery, C. S., Russell, L. B., and Rinchik, E. M. (1995). Molecular analysis of 36 mutations at the mouse pink-eyed dilution (p) locus. Genetics141, 1563–1571.10.1093/genetics/141.4.1563Suche in Google Scholar

Killian, J. K., Byrd, J. C., Jirtle, J. V., Munday, B. L., Stoskopf, M. K., MacDonald, R. G., and Jirtle, R. L. (2000). M6P/IGF2R imprinting evolution in mammals. Mol.Cell5, 707–716.10.1016/S1097-2765(00)80249-XSuche in Google Scholar

Kiss, T. (2001). Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J.20, 3617–3622.10.1093/emboj/20.14.3617Suche in Google Scholar

Komine, Y., Tanaka, N. K., Yano, R., Takai, S., Yuasa, S., Shiroishi, T., Tsuchiya, K., and Yamamori, T. (1999). A novel type of non-coding RNA expressed in the rat brain. Brain Res. Mol. Brain Res.66, 1–13.10.1016/S0169-328X(98)00343-XSuche in Google Scholar

Lai, E. C. (2003). microRNAs: runts of the genome assert themselves. Curr. Biol.13, R925–936.10.1016/j.cub.2003.11.017Suche in Google Scholar

Lin, S. P., Youngson, N., Takada, S., Seitz, H., Reik, W., Paulsen, M., Cavaille, J., and Ferguson-Smith, A. C. (2003). Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1–Gtl2 imprinted cluster on mouse chromosome 12. Nat. Genet.35, 97–102.10.1038/ng1233Suche in Google Scholar

Lynch, C., and Tristem, M. (2003). A co-opted gypsy-type LTR-retrotransposon is conserved in the genomes of humans, sheep, mice, and rats. Curr. Biol.13, 1518–1523.10.1016/S0960-9822(03)00618-3Suche in Google Scholar

Martens, J. A., Laprade, L., and Winston, F. (2004). Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature429, 571–574.10.1038/nature02538Suche in Google Scholar

Martienssen, R. (1998). Transposons, DNA methylation and gene control. Trends Genet.14, 263–264.10.1016/S0168-9525(98)01518-2Suche in Google Scholar

Matzke, M., Aufsatz, W., Kanno, T., Daxinger, L., Papp, I., Mette, M. F., and Matzke, A. J. (2004). Genetic analysis of RNA-mediated transcriptional gene silencing. Biochim. Biophys. Acta1677, 129–141.10.1016/j.bbaexp.2003.10.015Suche in Google Scholar PubMed

Meguro, M., Mitsuya, K., Nomura, N., Kohda, M., Kashiwagi, A., Nishigaki, R., Yoshioka, H., Nakao, M., Oishi, M., and Oshimura, M. (2001). Large-scale evaluation of imprinting status in the Prader-Willi syndrome region: an imprinted direct repeat cluster resembling small nucleolar RNA genes. Hum. Mol. Genet.10, 383–394.10.1093/hmg/10.4.383Suche in Google Scholar

Mette, M. F., van der Winden, J., Matzke, M., and Matzke, A. J. (2002). Short RNAs can identify new candidate transposable element families in Arabidopsis. Plant Physiol.130, 6–9.10.1104/pp.007047Suche in Google Scholar

Nicholls, R. D., and Knepper, J. L. (2001). Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu. Rev. Genomics Hum. Genet.2, 153–175.10.1146/annurev.genom.2.1.153Suche in Google Scholar

Reik, W., and Walter, J. (2001). Genomic imprinting: parental influence on the genome. Nat. Rev. Genet.2, 21–32.10.1038/35047554Suche in Google Scholar

Rougeulle, C., Cardoso, C., Fontes, M., Colleaux, L., and Lalande, M. (1998). An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nat. Genet.19, 15–16.10.1038/ng0598-15Suche in Google Scholar

Runte, M., Hüttenhofer, A., Gross, S., Kiefmann, M., Horsthemke, B., and Buiting, K. (2001). The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum. Mol. Genet.10, 2687–2700.10.1093/hmg/10.23.2687Suche in Google Scholar

Seitz, H., Youngson, N., Lin, S. P., Dalbert, S., Paulsen, M., Bachellerie, J. P., Ferguson-Smith, A. C., and Cavaille, J. (2003). Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat. Genet.34, 261–262.10.1038/ng1171Suche in Google Scholar

Seitz, H., Royo, H., Bortolin, M. L., Lin, S. P., Ferguson-Smith, A. C., and Cavaille, J. (2004). A large imprinted microRNA gene cluster at the mouse Dlk1–Gtl2 domain. Genome Res.14, 1741–1748.10.1101/gr.2743304Suche in Google Scholar

Sleutels, F., and Barlow, D. P. (2002). The origins of genomic imprinting in mammals. Adv. Genet.46, 119–163.10.1016/S0065-2660(02)46006-3Suche in Google Scholar

Sleutels, F., Zwart, R., and Barlow, D. P. (2002). The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature415, 810–813.10.1038/415810aSuche in Google Scholar PubMed

Smit, M., Segers, K., Carrascosa, L. G., Shay, T., Baraldi, F., Gyapay, G., Snowder, G., Georges, M., Cockett, N., and Charlier, C. (2003). Mosaicism of Solid Gold supports the causality of a noncoding A-to-G transition in the determinism of the callipyge phenotype. Genetics163, 453–456.10.1093/genetics/163.1.453Suche in Google Scholar

Takada, S., Paulsen, M., Tevendale, M., Tsai, C. E., Kelsey, G., Cattanach, B. M., and Ferguson-Smith, A. C. (2002). Epigenetic analysis of the Dlk1–Gtl2 imprinted domain on mouse chromosome 12: implications for imprinting control from comparison with Igf2–H19. Hum. Mol. Genet.11, 77–86.10.1093/hmg/11.1.77Suche in Google Scholar

Tsai, T. F., Jiang, Y. H., Bressler, J., Armstrong, D., and Beaudet, A. L. (1999). Paternal deletion from Snrpn to Ube3a in the mouse causes hypotonia, growth retardation and partial lethality and provides evidence for a gene contributing to Prader-Willi syndrome. Hum. Mol. Genet.8, 1357–1364.10.1093/hmg/8.8.1357Suche in Google Scholar

Verona, R. I., Mann, M. R., and Bartolomei, M. S. (2003). Genomic imprinting: intricacies of epigenetic regulation in clusters. Annu. Rev. Cell. Dev. Biol.19, 237–259.10.1146/annurev.cellbio.19.111401.092717Suche in Google Scholar

Whitelaw, E., and Martin, D. I. (2001). Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat. Genet.27, 361–365.10.1038/86850Suche in Google Scholar

Wilkins, J. F., and Haig, D. (2003). What good is genomic imprinting: the function of parent-specific gene expression. Nat. Rev. Genet.4, 359–368.10.1038/nrg1062Suche in Google Scholar

Wirth, J., Back, E., Huttenhofer, A., Nothwang, H. G., Lich, C., Gross, S., Menzel, C., Schinzel, A., Kioschis, P., Tommerup, N. et al. (2001). A translocation breakpoint cluster disrupts the newly defined 3′ end of the SNURF-SNRPN transcription unit on chromosome 15. Hum. Mol. Genet.10, 201–210.10.1093/hmg/10.3.201Suche in Google Scholar

Yekta, S., Shih, I. H., and Bartel, D. P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science304, 594–596.10.1126/science.1097434Suche in Google Scholar

Yi-Brunozzi, H. Y., Easterwood, L. M., Kamilar, G. M., and Beal, P. A. (1999). Synthetic substrate analogs for the RNA-editing adenosine deaminase ADAR-2. Nucleic Acids Res.27, 2912–2917.10.1093/nar/27.14.2912Suche in Google Scholar

Yoder, J. A., Walsh, C. P., and Bestor, T. H. (1997). Cytosine methylation and the ecology of intragenomic parasites. Trends Genet.13, 335–340.10.1016/S0168-9525(97)01181-5Suche in Google Scholar

Published Online: 2005-06-01
Published in Print: 2004-10-01

© Walter de Gruyter

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2004.118/html?lang=de
Button zum nach oben scrollen