1 Introduction to bio-based packaging materials
-
R. A. Ilyas
Abstract
Bio-based materials must be studied to replace polymers from petrochemical sources in packaging applications. However, using polymers from petrochemical sources has caused consumer and environmental concerns. Therefore, synthetic and nonsynthetic materials that can be used for packaging applications, scale-up methods, industrial uses, sustainability assessments, and end-of-life alternatives will all be included in this study. Synthetic polymers, e.g., polylactic acid (PLA), polyethylene furanoate (PEF), polybutylene succinate (PBS), and non-synthetic polymers, including waxes, lipids, proteins, starch, cellulose, and polyhydrodialkanoate (PHAs), are some of the bio-based compounds that will be covered in this work. Besides that, more attention is paid to surface modification techniques and coatings, multilayers, biocomposites, and additives used to modify material characteristics, particularly gas and moisture barriers and biodegradability. In sum, this research offers a comprehensive analysis of bio-based packaging materials, including processing, and an assessment of sustainability and available alternatives.
Abstract
Bio-based materials must be studied to replace polymers from petrochemical sources in packaging applications. However, using polymers from petrochemical sources has caused consumer and environmental concerns. Therefore, synthetic and nonsynthetic materials that can be used for packaging applications, scale-up methods, industrial uses, sustainability assessments, and end-of-life alternatives will all be included in this study. Synthetic polymers, e.g., polylactic acid (PLA), polyethylene furanoate (PEF), polybutylene succinate (PBS), and non-synthetic polymers, including waxes, lipids, proteins, starch, cellulose, and polyhydrodialkanoate (PHAs), are some of the bio-based compounds that will be covered in this work. Besides that, more attention is paid to surface modification techniques and coatings, multilayers, biocomposites, and additives used to modify material characteristics, particularly gas and moisture barriers and biodegradability. In sum, this research offers a comprehensive analysis of bio-based packaging materials, including processing, and an assessment of sustainability and available alternatives.
Chapters in this book
- Frontmatter i
- About the editors v
- Preface vii
- Contents ix
- List of contributing authors xxi
- 1 Introduction to bio-based packaging materials 1
- 2 Fabrication of starch-based packaging materials 17
- 3 Nanocellulose: from biosources to nanofiber and their applications 35
- 4 Development of nanocellulosefiber reinforced starch biopolymer composites: a review 61
- 5 Highly functional nanocellulose-reinforced thermoplastic starch-based nanocomposites 103
- 6 Sugar palm (Arenga pinnata) thermoplastic starch nanocomposite films reinforced with nanocellulose 121
- 7 Morphological, water barrier and biodegradable properties of sugar palm nanocellulose/starch biopolymer composites incorporated with cinnamon essential oils 141
- 8 Mechanical degradation of sugar palm crystalline nanocellulose reinforced thermoplastic sugar palm starch (TPS)/poly (lactic acid) (PLA) blend bionanocomposites in aqueous environments 159
- 9 Araucaria Araucana thermoplastic starch nanocomposite films reinforced with nanocellulose 173
- 10 Banana starch nanocomposite films reinforced with nanocellulose 191
- 11 Barley thermoplastic starch nanocomposite films reinforced with nanocellulose 213
- 12 Cassava starch nanocomposite films reinforced with nanocellulose 227
- 13 Corn starch nanocomposite films reinforced with nanocellulose 255
- 14 Horse chestnut thermoplastic starch nanocomposite films reinforced with nanocellulose 285
- 15 Oat thermoplastic starch nanocomposite films reinforced with nanocellulose 299
- 16 Pea thermoplastic starch nanocomposite films reinforced with nanocellulose 317
- 17 Potato thermoplastic starch nanocomposite films reinforced with nanocellulose 331
- 18 Recent developments in sago starch thermoplastic bio-composites 349
- 19 Review on sago thermoplastic starch composite films reinforced with nanocellulose 373
- 20 Rice thermoplastic starch nanocomposite films reinforced with nanocellulose 383
- 21 Wheat thermoplastic starch composite films reinforced with nanocellulose 401
- 22 Regulations for food packaging materials 415
- 23 Environmental advantages and challenges of nanocellulose reinforced starch-based packaging 439
- Index 459
Chapters in this book
- Frontmatter i
- About the editors v
- Preface vii
- Contents ix
- List of contributing authors xxi
- 1 Introduction to bio-based packaging materials 1
- 2 Fabrication of starch-based packaging materials 17
- 3 Nanocellulose: from biosources to nanofiber and their applications 35
- 4 Development of nanocellulosefiber reinforced starch biopolymer composites: a review 61
- 5 Highly functional nanocellulose-reinforced thermoplastic starch-based nanocomposites 103
- 6 Sugar palm (Arenga pinnata) thermoplastic starch nanocomposite films reinforced with nanocellulose 121
- 7 Morphological, water barrier and biodegradable properties of sugar palm nanocellulose/starch biopolymer composites incorporated with cinnamon essential oils 141
- 8 Mechanical degradation of sugar palm crystalline nanocellulose reinforced thermoplastic sugar palm starch (TPS)/poly (lactic acid) (PLA) blend bionanocomposites in aqueous environments 159
- 9 Araucaria Araucana thermoplastic starch nanocomposite films reinforced with nanocellulose 173
- 10 Banana starch nanocomposite films reinforced with nanocellulose 191
- 11 Barley thermoplastic starch nanocomposite films reinforced with nanocellulose 213
- 12 Cassava starch nanocomposite films reinforced with nanocellulose 227
- 13 Corn starch nanocomposite films reinforced with nanocellulose 255
- 14 Horse chestnut thermoplastic starch nanocomposite films reinforced with nanocellulose 285
- 15 Oat thermoplastic starch nanocomposite films reinforced with nanocellulose 299
- 16 Pea thermoplastic starch nanocomposite films reinforced with nanocellulose 317
- 17 Potato thermoplastic starch nanocomposite films reinforced with nanocellulose 331
- 18 Recent developments in sago starch thermoplastic bio-composites 349
- 19 Review on sago thermoplastic starch composite films reinforced with nanocellulose 373
- 20 Rice thermoplastic starch nanocomposite films reinforced with nanocellulose 383
- 21 Wheat thermoplastic starch composite films reinforced with nanocellulose 401
- 22 Regulations for food packaging materials 415
- 23 Environmental advantages and challenges of nanocellulose reinforced starch-based packaging 439
- Index 459