Startseite Mathematik Progress in Commutative Algebra 1
book: Progress in Commutative Algebra 1
Buch Open Access

Progress in Commutative Algebra 1

Combinatorics and Homology
  • Herausgegeben von: Christopher Francisco , Lee C. Klingler , Sean Sather-Wagstaff und Janet C. Vassilev
  • Mit Beiträgen von: Timothy B. P. Clark , Susan M. Cooper , Gunnar Fløystad , Anthony V. Geramita , Brian Harbourne , Livia Hummel , Graham J. Leuschke , Jeff Mermin , Juan C. Migliore , Susan Morey , Paul C. Roberts , Rafael Heraclio Villarreal Rodríguez und Yongwei Yao
Sprache: Englisch
Veröffentlicht/Copyright: 2012
Veröffentlichen auch Sie bei De Gruyter Brill
De Gruyter Proceedings in Mathematics
Dieses Buch ist Teil der Reihe

Über dieses Buch

This is the first of two volumes of a state-of-the-art survey article collection which originates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. These volumes present current trends in two of the most active areas of commutative algebra: non-noetherian rings (factorization, ideal theory, integrality), and noetherian rings (the local theory, graded situation, and interactions with combinatorics and geometry).

This volume contains combinatorial and homological surveys. The combinatorial papers document some of the increasing focus in commutative algebra recently on the interaction between algebra and combinatorics. Specifically, one can use combinatorial techniques to investigate resolutions and other algebraic structures as with the papers of Fløystad on Boij-Söderburg theory, of Geramita, Harbourne and Migliore, and of Cooper on Hilbert functions, of Clark on minimal poset resolutions and of Mermin on simplicial resolutions. One can also utilize algebraic invariants to understand combinatorial structures like graphs, hypergraphs, and simplicial complexes such as in the paper of Morey and Villarreal on edge ideals.

Homological techniques have become indispensable tools for the study of noetherian rings. These ideas have yielded amazing levels of interaction with other fields like algebraic topology (via differential graded techniques as well as the foundations of homological algebra), analysis (via the study of D-modules), and combinatorics (as described in the previous paragraph). The homological articles the editors have included in this volume relate mostly to how homological techniques help us better understand rings and singularities both noetherian and non-noetherian such as in the papers by Roberts, Yao, Hummel and Leuschke.

Information zu Autoren / Herausgebern

Christopher Francisco, Oklahoma State University, Stillwater, Oklahoma, USA; Lee C. Klingler, Florida Atlantic University, Boca Raton, Florida, USA; Sean M. Sather-Wagstaff, North Dakota State University, Fargo, North Dakota, USA; Janet Vassilev, University of New Mexico, Albuquerque, New Mexico, USA.

Zusatzmaterial

Informationen zur Veröffentlichung
Seiten und Bilder/Illustrationen im Buch
eBook veröffentlicht am:
26. April 2012
eBook ISBN:
9783110250404
Gebunden veröffentlicht am:
16. April 2012
Gebunden ISBN:
9783110250343
Seiten und Bilder/Illustrationen im Buch
Frontmatter:
11
Inhalt:
361
Heruntergeladen am 1.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/9783110250404/html
Button zum nach oben scrollen