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Abstract. Let € be a clutter and let /(€) C R be its edge ideal. This is a survey paper on the
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estimate the regularity of R/I(€) and apply this criterion to give new proofs of some formulas
for the regularity. If R/I(€) is sequentially Cohen—-Macaulay, we present a formula for the
regularity of the ideal of vertex covers of € and give a formula for the projective dimension of
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graph with a leaf, these sets form an ascending chain.
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1 Introduction

A clutter € is a finite ground set X together with a family E of subsets of X such that
if f1, f2 € E,then fi ¢ f>. The ground set X is called the vertex set of € and E is
called the edge set of €, denoted by V(€) and E(€) respectively. Clutters are simple
hypergraphs and are sometimes called Sperner families in the literature. We can also
think of a clutter as the maximal faces of a simplicial complex over a ground set. One
example of a clutter is a graph with the vertices and edges defined in the usual way.

Let € be a clutter with vertex set X = {xy, ..., x,} and with edge set £ (€). Permit-
ting an abuse of notation, we will also denote by x; the i variable in the polynomial
ring R = K|[x1,...,xu] over a field K. The edge ideal of €, denoted by I(€), is
the ideal of R generated by all monomials x, = [, ¢, xi such thate € E(C). Edge
ideals of graphs and clutters were introduced in [109] and [39, 47, 53], respectively.
The assignment € — I(€) establishes a natural one-to-one correspondence between
the family of clutters and the family of square-free monomial ideals. Edge ideals of
clutters are also called facet ideals [39].

This is a survey paper on edge ideals, which includes some new proofs of known
results and some new results. The study of algebraic and combinatorial properties
of edge ideals and clutters (e.g., Cohen—Macaulayness, unmixedness, normality, nor-
mally torsion-freeness, shellability, vertex decomposability, stability of associated
primes) is of current interest, see [22,24,25,32,39,41,42,45,51,61,62,89,116] and
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the references there. In this paper we will focus on the following algebraic properties:
the sequentially Cohen—Macaulay property, the stability of associated primes, and the
connection between torsion-freeness and combinatorial problems.

The numerical invariants of edge ideals have attracted a great deal of interest [1,46,
53,77,87,90,91,106,110,117,118]. In this paper we focus on the following invariants:
projective dimension, regularity, depth and Krull dimension.

We present a few new results on edge ideals. We give a criterion to estimate the
regularity of edge ideals (see Theorem 3.14). We apply this criterion to give new
proofs of some formulas for the regularity of edge ideals (see Corollary 3.15). If € is
a clutter and R/1(€) is sequentially Cohen—Macaulay, we present a formula for the
regularity of the ideal of vertex covers of € (see Theorem 3.31) and give a formula for
the projective dimension of R/1(€) (see Corollary 3.33). We also give a new class of
monomial ideals for which the sets of associate primes of powers are known to form
ascending chains (Proposition 4.23).

For undefined terminology on commutative algebra, edge ideals, graph theory, and
the theory of clutters and hypergraphs we refer to [10, 28, 102], [38, 110], [7, 54],
[17,97], respectively.

2 Algebraic and Combinatorial Properties of Edge Ideals

Let € be a clutter with vertex set X = {x1,...,x,}andlet / = I(€) C R be its edge
ideal. A subset F of X is called independent or stable if e ¢ F forany e € E(€). The
dual concept of a stable vertex set is a vertex cover, i.e., a subset C of X is a vertex
cover of € if and only if X \ C is a stable vertex set. A first hint of the rich interaction
between the combinatorics of € and the algebra of /() is that the number of vertices
in a minimum vertex cover of € (the covering number ao(€) of €) coincides with the
height ht I(€) of the ideal I(€). The number of vertices in a maximum stable set (the
stability number of €) is denoted by Bo(€). Notice that n = o (€) + Bo(€).

A less immediate interaction between the two fields comes from passing to a simpli-
cial complex and relating combinatorial properties of the complex to algebraic prop-
erties of the ideal. The Stanley—Reisner complex of /(€), denoted by Ae, is the
simplicial complex whose faces are the independent vertex sets of €. The complex
A is also called the independence complex of €. Recall that Ae is called pure if all
maximal independent vertex sets of €, with respect to inclusion, have the same number
of elements. If Ag is pure (resp. Cohen—Macaulay, shellable, vertex decomposable),
we say that € is unmixed (resp. Cohen—Macaulay, shellable, vertex decomposable).
Since minor variations of the definition of shellability exist in the literature, we state
here the definition used throughout this article.

Definition 2.1. A simplicial complex A is shellable if the facets (maximal faces) of
A can be ordered F7p,..., Fg such that forall 1 < i < j < s, there exists some
veFj\Fiandsomel € {l,...,j — 1} with F; \ F; = {v}.
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We are interested in determining which families of clutters have the property that
Ae is pure, Cohen—Macaulay, or shellable. These properties have been extensively
studied, see [10,89,92-94,100, 102,110, 111] and the references there.

The above definition of shellable is due to Bjorner and Wachs [6] and is usually
referred to as nonpure shellable, although here we will drop the adjective “nonpure”.
Originally, the definition of shellable also required that the simplicial complex be pure,
that is, all facets have the same dimension. We will say A is pure shellable if it also
satisfies this hypothesis. These properties are related to other important properties
[10,102,110]:

pure shellable = constructible = Cohen-Macaulay <= Gorenstein.

If a shellable complex is not pure, an implication similar to that above holds when
Cohen—Macaulay is replaced by sequentially Cohen—Macaulay.

Definition 2.2. Let R = K[x1,...,x,]. A graded R-module M is called sequentially
Cohen—Macaulay (over K) if there exists a finite filtration of graded R-modules

O=MyCMyC---CM, =M

such that each M;/M;_; is Cohen—Macaulay, and the Krull dimensions of the quo-
tients are increasing:

dim(Ml/M()) < dim(Mz/Ml) < < dim(Mr/Mr_l).

We call a clutter € sequentially Cohen—Macaulay if R /1(€) is sequentially Cohen—
Macaulay. As first shown by Stanley [102], shellable implies sequentially Cohen—
Macaulay.

A related notion for a simplicial complex is that of vertex decomposability [5]. If A
is a simplicial complex and v is a vertex of A, then the subcomplex formed by deleting
v is the simplicial complex consisting of the faces of A that do not contain v, and the
link of v is

lk(v) ={F € Alv ¢ Fand F U {v} € A}.

Suppose A is a (not necessarily pure) simplicial complex. We say that A is vertex-
decomposable if either A is a simplex, or A contains a vertex v such that both the link
of v and the subcomplex formed by deleting v are vertex-decomposable, and such that
every facet of the deletion is a facet of A. If € is vertex decomposable, i.e., Ag is
vertex decomposable, then € is shellable and sequentially Cohen—Macaulay [5, 116].
Thus, we have:

vertex decomposable —= shellable — sequentially Cohen—Macaulay.

Two additional properties related to the properties above are also of interest in this
area. One is the unmixed property, which is implied by the Cohen—Macaulay property.
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The other is balanced. To define balanced, it is useful to have a matrix that encodes
the edges of a graph or clutter.

Definition 2.3. Let fi,..., f; be the edges of a clutter €. The incidence matrix or
clutter matrix of € is the n x ¢ matrix A = (a;j) given by a;; = 1if x; € f; and
ajj = 0 otherwise. We say that € is a fotally balanced clutter (resp. balanced clutter)
if A has no square submatrix of order at least 3 (resp. of odd order) with exactly two
I’s in each row and column.

If G is a graph, then G is balanced if and only if G is bipartite and G is totally
balanced if and only if G is a forest [96,97].

While the implications between the properties mentioned above are interesting in
their own right, it is useful to identify classes of ideals that satisfy the various proper-
ties. We begin with the Cohen—Macaulay and unmixed properties. There are classifi-
cations of the following families in terms of combinatorial properties of the graph or
clutter:

(c1) [94,111] unmixed bipartite graphs,

(c2) [36,60] Cohen—Macaulay bipartite graphs,

(c3) [109] Cohen—Macaulay trees,

(cq4) [38] totally balanced unmixed clutters,

(c5) [89] unmixed clutters with the Konig property without cycles of length 3 or 4,

(c6) [89] unmixed balanced clutters.

We now focus on the sequentially Cohen—Macaulay property.

Proposition 2.4 ([43]). The only sequentially Cohen—Macaulay cycles are C3 and Cs.

The next theorem generalizes a result of [36] (see (cz) above) which shows that a
bipartite graph G is Cohen—Macaulay if and only if Ag has a pure shelling.

Theorem 2.5 ([107]). Let G be a bipartite graph. Then G is shellable if and only if G
is sequentially Cohen—Macaulay.

Recently Van Tuyl [106] has shown that Theorem 2.5 remains valid if we replace
shellable by vertex decomposable.

Additional examples of sequentially Cohen—Macaulay ideals depend on the chordal
structure of the graph. A graph G is said to be chordal if every cycle of G of length
at least 4 has a chord. A chord of a cycle is an edge joining two non-adjacent ver-
tices of the cycle. Chordal graphs have been extensively studied, and they can be
constructed according to a result of G. A. Dirac, see [21, 63, 104]. A chordal graph
is called strongly chordal if every cycle C of even length at least six has a chord that
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divides C into two odd length paths. A clique of a graph is a set of mutually adja-
cent vertices. Totally balanced clutters are precisely the clutters of maximal cliques of
strongly chordal graphs by a result of Farber [37]. Faridi [39] introduced the notion of
a simplicial forest. In [62, Theorem 3.2] it is shown that € is the clutter of the facets of
a simplicial forest if and only if € is a totally balanced clutter. Additionally, a clutter
€ is called d-uniform if all its edges have size d.

Theorem 2.6. Any of the following clutters is sequentially Cohen—Macaulay:
(1) [116] graphs with no chordless cycles of length other than 3 or 5,
(i1) [43] chordal graphs,

(iii) [63] clutters whose ideal of covers has linear quotients (see Definitions 2.7
and 3.1),

(iv) [55] clutters of paths of length t of directed rooted trees,
(v) [39] simplicial forests, i.e., totally balanced clutters,

(vi) [52] uniform admissible clutters whose covering number is 3.

The clutters of parts (i)—(v) are in fact shellable, and the clutters of parts (i)—(ii) are
in fact vertex decomposable, see [22,63, 106, 107,115, 116]. The family of graphs in
part (ii) is contained in the family of graphs of part (i) because the only induced cycles
of a chordal graph are 3-cycles.

A useful tool in examining invariants related to resolutions comes from a carefully
chosen ordering of the generators.

Definition 2.7. A monomial ideal I has linear quotients if the monomials that generate
I can be ordered g1,.... g4 such thatforall 1 <i <g¢g—1,((g1.....8i) : g&i+1)1s
generated by linear forms.

If an edge ideal I is generated in a single degree and / has linear quotients, then /
has a linear resolution (cf. [39, Lemma 5.2]). If 7 is the edge ideal of a graph, then /
has linear quotients if and only if / has a linear resolution if and only if each power of
I has a linear resolution [64].

Let G be a graph. Given a subset A C V(G), by G \ A, we mean the graph formed
from G by deleting all the vertices in A, and all edges incident to a vertex in A. A
graph G is called vertex-critical if ao(G \ {v}) < ao(G) for all v € V(G). An edge
critical graph is defined similarly. The final property introduced in this section is a
combinatorial decomposition of the vertex set of a graph.

Definition 2.8 ([2]). A graph G without isolated vertices is called a B-graph if there
is a family § consisting of independent sets of G such that V(G) = |Jceg C and
|C| = Bo(G) forall C € 6.
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The notion of a B-graph is at the center of several interesting families of graphs.
One has the following implications for any graph G without isolated vertices [2, 110]:

edge-critical —
B-graph = vertex-critical
Cohen-Macaulay =  unmixed =—

In [2] the integer «o(G) is called the transversal number of G.

Theorem 2.9 ([34,46]). If G is a B-graph, then Bo(G) < ao(G).

3 Invariants of Edge Ideals: Regularity, Projective
Dimension, Depth

Let € be a clutter and let / = I(€) be its edge ideal. In this section we study the
regularity, depth, projective dimension, and Krull dimension of R/I(€). There are
several well-known results relating these invariants that will prove useful. We collect
some of them here for ease of reference.

The first result is a basic relation between the dimension and the depth (see for
example [28, Proposition 18.2]):

depth R/I(€) < dim R/I(E). 3.1)

The deviation from equality in the above relationship can be quantified using the pro-
jective dimension, as is seen in a formula discovered by Auslander and Buchsbaum
(see [28, Theorem 19.9]):

pdR(R/I(€)) + depth R/I(€) = depth(R). 3.2)

Notice that since in the setting of this article R is a polynomial ring in n variables,
depth(R) = n.

Another invariant of interest also follows from a closer inspection of a minimal
projective resolution of R//. Consider the minimal graded free resolution of M =
R/I as an R-module:

Fo: 0 @R — - @R/ - R~ R/I 0.
j j

The Castelnuovo—Mumford regularity or simply the regularity of M is defined as
reg(M) = max{j —i| byj # O}.

An excellent reference for the regularity is the book of Eisenbud [29]. There are
methods to compute the regularity of R/[ avoiding the construction of a minimal
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graded free resolution, see [3] and [50, page 614]. These methods work for any homo-
geneous ideal over an arbitrary field.

We are interested in finding good bounds for the regularity. Of particular interest is
to be able to express reg(R /I (€)) in terms of the combinatorics of €, at least for some
special families of clutters. Several authors have studied the regularity of edge ideals
of graphs and clutters [18,20,53,74,75,77,81,90, 103, 106, 114]. The main results
are general bounds for the regularity and combinatorial formulas for the regularity of
special families of clutters. The estimates for the regularity are in terms of matching
numbers and the number of cliques needed to cover the vertex set. Covers will play a
particularly important role since they form the basis for a duality.

Definition 3.1. The ideal of covers of I1(€), denoted by I.(€), is the ideal of R gen-
erated by all the monomials x;, ---x;, such that {x;,,...,x; } is a vertex cover of
€. The ideal 1.(€) is also called the Alexander dual of I1(€) and is also denoted
by I(€)Y. The clutter of minimal vertex covers of €, denoted by €V, is called the
Alexander dual clutter or blocker of €.

To better understand the Alexander dual, let e € E(€) and consider the monomial
prime ideal (¢) = ({x;|x; € e}). Then the duality is given by:

1(8): (Xel,xez,...,xeq) :plﬂpzﬂmps
I $ (3.3)
I.(€)=(e1)N(ex)N--- N (eq) = (xp] , Xpys e ’xps)7

where py, ..., ps are the associated primes of /(€) and xy, = [[,ep, Xi for 1 <
k < s. Notice the equality I.(€) = I(€"). Since (€Y)Y = €, we have [.(€Y) =
1(€). In many cases [(€) reflects properties of /.(€) and viceversa [27,58,86]. The
following result illustrates this interaction.

Theorem 3.2 ([103]). Let € be a clutter. If ht(I1(C)) > 2, then
regI[(€) =1+4+regR/I(€) =pd R/I.(€),
where 1.(€) is the ideal of minimal vertex covers of €.

If |e] > 2 for all e € E(€), then this formula says that the regularity of R/I(€)
equals 1 if and only if /.(€) is a Cohen—Macaulay ideal of height 2. This formula
will be used to show that regularity behaves well when working with edge ideals with
disjoint sets of variables (see Proposition 3.4). This formula also holds for edge ideals
of height one [61, Proposition 8.1.10].

Corollary 3.3. Ifht(I(€)) = 1, thenreg R/I(€) = pd R/I.(€) — 1.
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Proof. We set I = I(€). The formula clearly holds if / = (x;---x,) is a principal
ideal. Assume that [ is not principal. Consider the primary decomposition of /

I'=(x1)N--Nx)Nppr Neee N P,

where L = py N --- N pyy is an edge ideal of height at least 2. Notice that [ = fL,
where f = xp---x,. Then the Alexander dual of [ is

IV = (_xl,...,Xr,xPl,sz,...,xpm) = (-xlv---,.x")-‘rLV,

The multiplication map L[—r] 1) fL induces an isomorphism of graded R-modules.
Thus reg(L[—r]) = r + reg(L) = reg(/). By the Auslander—Buchsbaum formula,
one has the equality pd(R/I1) = r + pd(R/L"). Therefore, using Theorem 3.2, we
get

reg(R/1) =reg(R/L) + r 2 (pd(R/LY) — 1) + r = pd(R/I") — 1.
Thus reg(R/1) = pd(R/IY) — 1, as required. O

Next we show some basic properties of regularity. The first such property is that
regularity behaves well when working with the edge ideal of a graph with multiple
disjoint components or with isolated vertices, as can be seen by the following propo-
sition.

Proposition 3.4 ([117, Lemma 7]). Let Ry = K[x] and Ry = K]|y] be two polynomial
rings over a field K and let R = K[x,y|. If I and I, are edge ideals of Ry and R;
respectively, then

reg R/(I1R + I2R) = reg(R1/11) + reg(Ra2/I2).

Proof. By abuse of notation, we will write /; in place of I; R fori = 1,2 when it is
clear from context that we are using the generators of /; but extending to an ideal of
the larger ring. Let x = {x1,...,x,} andy = {y1,..., ym} be two disjoint sets of
variables. Notice that (11 +12)" = I\Y1,) = I, N1’ where I, is the Alexander dual
of I; (see Definition 3.1). Hence by Theorem 3.2 and using the Auslander—Buchsbaum
formula, we get

reg(R/(I1 + I2)) = n +m —depth(R/(I N Iy)) — 1,
reg(R1/11) + reg(Ra/ 1) = n — depth(Ry/1{’) — 1 + m — depth(R /1)) — 1.

Therefore we need only show the equality

depth(R/(I;’ N 1,")) = depth(R1/1;") + depth(R>/1,") + 1.
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Since depth(R/(I," + 1,")) = depth(R1/I,") + depth(R2 /1)), the proof reduces to
showing the equality

depth(R /(1Y N I,/)) = depth(R/(IY + 1)) + 1. (3.4)

We may assume that depth(R/1,’) > depth(R/1,’). There is an exact sequence of
graded R-modules:

0— R/IY NI R/IY @ R/IY 55 RJ(IY + 1)) — 0, (3.5
where () = (¥, —7) and ¢(r1,72) = r1 + r2. From the inequality
depth(R/1)’ @ R/1,') = max{depth(R/I;Y)}?_, = depth(R/1,’)
= depth(Ry/1)) + m
> depth(Ry /1Y) + depth(Ra/1y) = depth(R/(I + 1))

and applying the depth lemma (see [10, Proposition 1.2.9] for example) to (3.5), we
obtain (3.4). O

Another useful property of regularity is that one can delete isolated vertices of a
graph without changing the regularity of the edge ideal. The following lemma shows
that this can be done without significant changes to the projective dimension as well.

Lemma 3.5. Let R = K|[x1,...,xp] and I be an ideal of R. If I C (x1,...,Xn—1),
and R'=R/(x,) = K[x1,...,Xp—1], thenreg(R/I)=reg(R'/I) and pdg(R/I) =
pdr/(R'/I). Similarly, if x, € I and I" = 1 /(xy), thenreg(R/1) = reg(R'/1") and
pdr(R/1) = pdp/(R'/1") + 1.

Proof. The first projective dimension result follows from the Auslander—Buchsbaum
formula since depth(R /1) = depth(R’/I) + 1 and depth(R) = depth(R’) + 1. Since
depth(R/I) = depth(R’/1’) the second result for projective dimension holds as well.
The results for regularity follow from Proposition 3.4 by noting that the regularity of
a polynomial ring K [x] is 0, as is the regularity of the field K = K[x]/(x). O

While adding variables to the ring will preserve the regularity, other changes to the
base ring, such as changing the characteristic, will affect this invariant. The following
example shows that, even for graphs, a purely combinatorial description of the regu-
larity might not be possible. Results regarding the role the characteristic of the field
plays in the resolution of the ideal appear in [19, 74].

Example 3.6. Consider the edge ideal / C R = KJxy,...,x10] generated by the
monomials
X1X3, X1X4, X1X7, X1X10, X1X11, X2X4, X2X5, X2X8, X2X10.
X2X11, X3X5, X3X6, X3Xg, X3X11, X4X6, X4X9, X4X11, X5X7,

X5X9,  X5X11, X6X8, XeX9, X7X9, X7X10, X8X10-



94 S. Morey and R. H. Villarreal

Using Macaulay? [49] we get that reg(R/1) = 3 if char(K) = 2, and reg(R/I) = 2
if char(K) = 3.

As mentioned in Theorem 2.6 (ii), chordal graphs provide a key example of a class
of clutters whose edge ideals are sequentially Cohen—Macaulay. Much work has been
done toward finding hypergraph generalizations of chordal graphs, typically by look-
ing at cycles of edges or at tree hypergraphs [32,53, 113]. The papers [53,113,115]
contribute to the algebraic approach that is largely motivated by finding hypergraph
generalizations that have edge ideals with linear resolutions.

It is useful to consider the homogeneous components of the ideals when using linear
resolutions. Let (/) denote the ideal generated by all degree d elements of a homo-
geneous ideal /. Then [/ is called componentwise linear if (I ;) has a linear resolution
for all d. If I is the edge ideal of a clutter, we write I[4] for the ideal generated by all
the squarefree monomials of degree d in 1.

Theorem 3.7. Let K be a field and € be a clutter. Then
(1) [27] R/I(€) is Cohen—Macaulay if and only if 1.(€) has a linear resolution.

(i) [58] R/I(€) is sequentially Cohen—Macaulay if and only if 1.(€) is componen-
twise linear.

(iii) [58] I(€) is componentwise linear if and only if 1(€)[q4] has a linear resolution
ford > 0.

(iv) [44] If G is a graph, then 1(G) has a linear resolution if and only if G€ is
chordal.

(v) [103] If G is a graph, then reg(R/I(G)) = 1 if and only if 1.(G) is Cohen—
Macaulay.

A graph whose complement is chordal is called co-chordal. A consequence of this
result and Theorem 3.2 is that an edge ideal /(€) has regularity 2 if and only if Ag is
the independence complex of a co-chordal graph. In this case the complex A turns
out to be a quasi-forest in the sense of Zheng [118]. In [61, Theorem 9.2.12] it is
shown that a complex A is a quasi-forest if and only if A is the clique complex of a
chordal graph.

Information about the regularity of a clutter can also be found by examining smaller,
closely related clutters. Let S be a set of vertices of a clutter €. The induced subclutter
on §, denoted by €[S], is the maximal subclutter of € with vertex set S. Thus the
vertex set of €[S] is S and the edges of €[S] are exactly the edges of € contained in
S'. Notice that €[S] may have isolated vertices, i.e., vertices that do not belong to any
edge of €[S]. If € is a discrete clutter, i.e., all the vertices of € are isolated, we set
I1(€) = 0 and o (€) = 0. A clutter of the form €[S] for some S C V(€) is called an
induced subclutter of €.
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Proposition 3.8. Suppose D is an induced subclutter of €. Then reg(R/I1(D)) <
reg(R/1(C)).

Proof. There is S C V(€) such that D = €[S]. Let p be the prime ideal of R
generated by the variables in S. By duality, we have

@)= (@=1@p= ()@s= [)@p=I(D)y.

ecE(€) ecE(€) ecE(D)

Therefore, using Theorem 3.2 and Lemma 3.5, we get

reg(R/1(€)) = pd(R/1:(€)) — 1
= pd(Rp/1c(€)p) — 1 = pd(Rp/Ic(D)p) — 1
= pd(R'/Ic(D)) — 1 = pd(R/Ic(D)) — 1 = reg(R/I(D)),

where R’ is the polynomial ring K[S]. Thus, reg(R/I(€)) > reg(R/I1(D)). a

Several combinatorially defined invariants that bound the regularity or other invari-
ants of a clutter are given in terms of subsets of the edge set of the clutter. An induced
matching in a clutter € is a set of pairwise disjoint edges f1, ..., fr such that the only
edges of € contained in | J]_; f; are fi,..., fr. Weletim(€) be the number of edges
in the largest induced matching.

The next result was shown in [53, Theorem 6.5] for the family of uniform properly-
connected hypergraphs.

Corollary 3.9. Let € be a clutter and let f1, ..., fr be an induced matching of € with
di = |filfori =1,...,r. Then

() i, di) —r <reg(R/I(€)).

(i1) [74, Lemma 2.2] im(G) < reg(R/I(G)) for any graph G.

Proof. Let D = €[U;_, fi]. Notice that I(D) = (xf,,...,xz,). Thus I(D) is a
complete intersection and the regularity of R/I1(D) is the degree of its i-polynomial.
The Hilbert series of R/I(D) is given by

Moy (Lt 4287h

HSop (1) = T

Thus, the degree of the h-polynomial equals (_;_, d;)—r. Therefore, part (i) follows
from Proposition 3.8. Part (ii) follows from part (i). |

Corollary 3.10. If € is a clutter and R/ 1.(€) is Cohen—Macaulay, then im(€) = 1.

Proof. Let r be the induced matching number of € and let d be the cardinality of any
edge of €. Using Theorem 3.2 and Corollary 3.9, we obtain d — 1 > r(d — 1). Thus
r = 1, as required. a
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The following example shows that the inequality obtained in Corollary 3.9 (ii) can
be strict.

Example 3.11. Let G be the complement of a cycle C¢ = {x1, ..., x¢} of length six.
The edge ideal of G is

1(G) = (x1Xx3, X1X5, X1 X4, X2X6, X2X4, X2X5, X3X5, X3X6, X4X6).
Using Macaulay? [49], we get reg(R/1(G)) = 2 and im(G) = 1.

Lemma 3.12 ([28, Corollary 20.19]). If0 - N — M — L — 0 is a short exact
sequence of graded finitely generated R-modules, then

(1) reg(N) < max(reg(M),reg(L) + 1).

(ii) reg(M) < max(reg(N),reg(L)).
(iii) reg(L) < max(reg(N) — 1,reg(M)).

Definition 3.13. If x is a vertex of a graph G, then its neighbor set, denoted by Ng(x),
is the set of vertices of G adjacent to x.

The following theorem gives a precise sense in which passing to induced subgraphs
can be used to bound the regularity. Recall that a discrete graph is one in which all the
vertices are isolated.

Theorem 3.14. Let & be a family of graphs containing any discrete graph and let
B:F — N be a function satisfying that B(G) = 0 for any discrete graph G, and such
that given G € ¥, with E(G) # 0, there is x € V(G) such that the following two
conditions hold:

(1) G\{x}and G\ ({x} U Ng(x)) are in ¥ .

(i) B(G \ ({x} U Ng(x))) < B(G) and B(G \ {x}) < B(G).
Thenreg(R/1(G)) < B(G) forany G € ¥.

Proof. The proof is by induction on the number of vertices. Let G be a graph in .
If G is a discrete graph, then /(G) = (0) and reg(R) = B(G) = 0. Assume that G
has at least one edge. There is a vertex x € V(G) such that the induced subgraphs
Gy = G\ {x}and G, = G \ ({x} U Ng(x)) satisfy (i) and (ii). There is an exact
sequence of graded R-modules

0— R/(I(G):x)[-1] N R/I(G) — R/(x,I1(G)) — 0.
Notice that (/(G): x) = (Ng(x), 1(G2)) and (x, I(G)) = (x, I(G1)). The graphs G

and G have fewer vertices than G. It follows directly from the definition of regularity
that reg(M [—1]) = 1 + reg(M) for any graded R-module M. Therefore applying the
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induction hypothesis to G and G,, and using conditions (i) and (ii) and Lemma 3.5,
we get

reg(R/(I(G): x)[-1]) = reg(R/(I(G):x)) + 1 =reg(R'/I(G3)) + 1
< B(Gy) +1 < B(G),
reg(R/(x,1(G))) < B(G1) < B(G)

where R’ is the ring in the variables V(G,). Therefore from Lemma 3.12, the regu-
larity of R/I(G) is bounded by the maximum of the regularities of R/(1(G): x)[—1]
and R/(x, I(G)). Thusreg(R/1(G)) < B(G), as required. O

As an example of how Theorem 3.14 can be applied to obtain combinatorial bounds
for the regularity, we provide new proofs for several previously known results. Let G
be a graph. We let B/(G) be the cardinality of any smallest maximal matching of G.
Ha and Van Tuyl proved that the regularity of R/I(G) is bounded from above by the
matching number of G and Woodroofe improved this result showing that 8/(G) is an
upper bound for the regularity.

Corollary 3.15. Let G be a graph and let R = K[V (G)]. Then
(1) [53, Corollary 6.9] reg(R/1(G)) = im(G) for any chordal graph G.
(ii) [53, Theorem 6.7; 117 reg(R/1(G)) < B'(G).

(iii) [106, Theorem 3.3] reg(R/I1(G)) = im(G) if G is bipartite and R/I(G) is
sequentially Cohen—Macaulay.

Proof. (i) Let ¥ be the family of chordal graphs and let G be a chordal graph with
E(G) # @. By Corollary 3.9 and Theorem 3.14 it suffices to prove that there is
x € V(G) such that im(G1) < im(G) and im(G,) < im(G), where G; and G, are
the subgraphs G \ {x} and G \ ({x} U Ng(x)), respectively. The inequality im(G1) <
im(G) is clear because any induced matching of G; is an induced matching of G.
We now show the other inequality. By [104, Theorem 8.3], there is y € V(G) such
that G[Ng(y) U {y}] is a complete subgraph. Pick x € Ng(y) and set fo = {x, y}.
Consider an induced matching f1,..., fr of Gy with r = im(G,). We claim that
fo, fi,..., fr is an induced matching of G. Let e be an edge of G contained in
Ui—o fi- We may assume that e N fo # @ and e N f; # 0 for some i > 1, otherwise
e = foore = f; forsomei > 1. Thene = {y,z} ore = {x,z} forsome z € f;. If
e ={y,z},thenz € Ng(y)and x € Ng(y). Hence {z,x} € E(G)and z € Ng(x), a
contradiction because the vertex set of G is disjoint from Ng (x) U{x}. Ife = {x, z},
then z € Ng(x), a contradiction. This completes the proof of the claim. Hence
im(G,) < im(G).

(ii) Let ¥ be the family of all graphs and let G be a graph with E(G) # 0. By
Theorem 3.14 it suffices to prove that there is x € V(G) such that 8/(G1) < B'(G) and
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B'(G2) < B'(G), where Gy and G are the subgraphs G \ {x} and G \ ({x} U Ng(x)),
respectively.

Let f1...., f; be a maximal matching of G with r = B’(G) and let x, y be the
vertices of f1. Clearly f2,..., fr is a matching of G;. Thus we can extend it to a
maximal matching f5,..., f+,h1,...,hs of G1. Notice that s < 1. Indeed if s > 2,
then h; N f1 = @ for some i € {1,2} (otherwise y € h; N hy, which is impossi-
ble). Hence f1,..., fr,h; is a matching of G, a contradiction because f1,..., fr is
maximal. Therefore 8'(G1) <r — 1+ s < B/(G).

The set f>,..., fr contains a matching of G, namely those edges f; that do not
degenerate. Reorder the edges so that f>,..., f, are the edges that do not degenerate.
Then this set can be extended to a maximal matching f>,..., fm, r;l s fk/ of
G>. Now consider f, .. Since f1,..., f; is a maximal matching of G, f,,,, has
a nontrivial intersection with f; for some i. Note that i # 1 since f,,,; is an edge
of Gz, and i > m + 1 since fa,..., fm and f,,,, are all part of a matching of G».
Reorder so that i = m + 1. Repeat the process with f, 1o As before, I 4o has
a nontrivial intersection with f; for some i > m + 1. If i = m + 1, then since

i1 and f > are disjoint, each must share a different vertex with f,41. But f, 41
degenerated when passing to G, and G is induced on the remaining vertices, so this
is a contradiction. Thus we may reorder so that f, 4, nontrivially intersects fp+2.
Repeating this process, we see that fj/ nontrivially intersects f; forallm+1 < j < k.
Thusk <r.Now B'(G2) <k—-1=<r—1< B (G).

(iii) Let ¥ be the family of all bipartite graphs G such that R/1(G) is sequentially
Cohen—-Macaulay, and let §: ¥ — N be the function f(G) = im(G). Let G be
a graph in ¥ with E(G) # @. By Corollary 3.9 and Theorem 3.14 it suffices to
observe that, according to [107, Corollary 2.10], there are adjacent vertices x and y
with deg(y) = 1 such that the bipartite graphs G\ ({x}UNg(x)) and G\({y }UNg(»))
are sequentially Cohen—Macaulay. Thus conditions (i) and (ii) of Theorem 3.14 are
satisfied. O

Corollary 3.15 shows that the regularity of R/I(G) equals im(G) for any forest
G, which was first proved by Zheng [118]. If G is an unmixed graph, Kummini [77]
showed that reg(R /I (G)) equals the induced matching number of G. If G is claw-free
and its complement has no induced 4-cycles, then reg(R/1(G)) < 2 with equality if
its complement is not chordal [90] (note that in this case reg(R/I(G)) = im(G) + 1).
Formulas for the regularity of ideals of mixed products are given in [71]. The regularity
and depth of lex segment edge ideals are computed in [33]. The regularity and other
algebraic properties of the edge ideal /(G) associated to a Ferrers graph G are studied
in detail in [18]. If R/I(G) is Cohen—Macaulay, then a formula for reg(R/I(G))
follows from [95, Corollary 4.2].

The following result about regularity was shown by Kalai and Meshulam for square-
free monomial ideals and by Herzog for arbitrary monomial ideals. Similar inequali-
ties hold for the projective dimension.
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Proposition 3.16 ([57,73]). Let I, and I, be monomial ideals of R. Then
() reg R/(I1 + I2) <reg(R/I1) + reg(R/I2),
(ii) reg R/(I1 N I2) <reg(R/I1) +reg(R/12) + L.

Corollary 3.17. If €, . .., €, are clutters on the vertex set X, then

N

reg(R/I( U t’,-)) <reg(R/I(€1)) + -+ + reg(R/I(Ey)).

i=1

Proof. The set of edges of € = | Ji_, €; equals | J;_, E(€;). By Proposition 3.16, it
suffices to notice the equality (i, &) = > i_; 1(€). |

A clutter € is called co-CM if I.(€) is Cohen—Macaulay. A co-CM clutter is uni-
form because Cohen—Macaulay clutters are unmixed.

Corollary 3.18. If €, . .., € are co-CM clutters on the vertex set X, then
reg(R/I(U;j_1€)) < (di—1) + -+ + (ds = 1),
where d; is the number of elements in any edge of €;.

Proof. By Theorem 3.2, we get that reg R/I1(€;) = d; — 1 for all i. Thus the result
follows from Corollary 3.17. a

This result is especially useful for graphs. A graph G is weakly chordal if every
induced cycle in both G and G¢ has length at most 4. It was pointed out in [117] that a
weakly chordal graph G can be covered by im(G) co-CM graphs (this fact was shown
in [13]). Thus we have:

Theorem 3.19 ([117]). If G is a weakly chordal graph, then reg(R/1(G)) = im(G).

There are bounds for the regularity of R// in terms of some other algebraic invari-
ants of R/I. Recall that the a-invariant of R/I, denoted by a(R /1), is the degree
(as a rational function) of the Hilbert series of R/[. Also recall that the indepen-
dence complex of I1(€), denoted by A, is the simplicial complex whose faces are
the independent vertex sets of €. The arithmetic degree of I = I(€), denoted by
arith-deg(7), is the number of facets (maximal faces with respect to inclusion) of Ae.
The arithmetical rank of I, denoted by ara(/), is the least number of elements of R
which generate the ideal I up to radical.

Theorem 3.20 ([108, Corollary B.4.1]). a(R/I) < reg(R/I) — depth(R/I), with
equality if R/ I is Cohen—-Macaulay.

Theorem 3.21 ([79; 80, Proposition 3]). reg(R /1) = pd(R/I) — 1 < ara(l) — 1.
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The equality reg(R/IY) = pd(R/I) — 1 was pointed out earlier in Theorem 3.2.
There are many instances where the equality pd(R/I) = ara(/) holds, see [1,33,76]
and the references there. For example, for paths, one has pd(R /1) = ara(/) [1]. Barile
[1] has conjectured that the equality holds for edge ideals of forests. We also have that
n — min; {depth(R /I )} is an upper bound for ara(/), see [80]. This upper bound
tends to be very loose. If [ is the edge ideal of a tree, then / is normally torsion free
(see Section 4 together with Theorems 4.34 and 4.8). Then min; {depth(R/I®)} =1
by [87, Lemma 2.6]. But when [ is the edge ideal of a path with 8 vertices, then the
actual value of ara(/) is 5.

Theorem 3.22 ([103, Theorem 3.1]). Ifht(1) > 2, then reg(l) < arith-deg([]).

The next open problem is known as the Eisenbud—Goto regularity conjecture [30].

Conjecture 3.23. If p C (x1,...,x,)? is a prime graded ideal, then

reg(R/p) < deg(R/p) — codim(R /p).

A pure d-dimensional complex A is called connected in codimension 1 if each pair
of facets F, G can be connected by a sequence of facets ' = Fy, F1,..., Fs = G,
such that dim(F;—; N F;) =d — 1 for 1 <i <s. According to [5, Proposition 11.7],
every Cohen—Macaulay complex is connected in codimension 1.

The following gives a partial answer to the monomial version of the Eisenbud—Goto
regularity conjecture.

Theorem 3.24 ([103]). Let I = I(C) be an edge ideal. If Ae is connected in codi-
mension 1, then
reg(R/1) <deg(R/I)—codim(R/I).

The dual notion to the independence complex of /() is to start with a complex A
and associate to it an ideal whose independence complex is A.

Definition 3.25. Given a simplicial complex A with vertex set X = {x1,...,xp}, the
Stanley—Reisner ideal of A is defined as
In = {xgy oooxg | i <oos <l {Xips .o Xi ) €AY,

and its Stanley—Reisner ring K[A] is defined as the quotient ring R/ .
A simple proof the next result is given in [44].

Theorem 3.26 ([101]). Let € be a clutter and let A = A be its independence com-
plex. Then

depth R/I(€) = 1 + max{i | K[A"] is Cohen—Macaulay},
where A' = {F € A| dim(F) < i} is the i-skeleton of A and —1 < i < dim(A).
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A variation on the concept of the i-skeleton will facilitate an extension of the result
above to the sequentially Cohen—Macaulay case.

Definition 3.27. Let A be a simplicial complex. The pure i-skeleton of A is defined
as:

A = ({F e Al dim(F) = i}); —1 <i < dim(A),
where (¥) denotes the subcomplex generated by ¥ .

Note that Al is always pure of dimension i. We say that a simplicial complex A
is sequentially Cohen—Macaulay if its Stanley—Reisner ring has this property. The fol-
lowing results link the sequentially Cohen—Macaulay property to the Cohen—Macaulay
property and to the regularity and projective dimension. The first is an interesting re-
sult of Duval.

Theorem 3.28 ([26, Theorem 3.3]). Let A be a simplicial complex. Then A is sequen-
tially Cohen—Macaulay if and only if the pure i-skeleton Al jg Cohen—Macaulay for
—1 <i <dim(A).

Corollary 3.29. R/I(€) is Cohen—Macaulay if and only if R/I(€) is sequentially
Cohen—Macaulay and € is unmixed.

Lemma 3.30. Let € be a clutter and let A = Ae be its independence complex. If
B, (€) is the cardinality of a smallest maximal independent set of €, then Al = A

fori < By(€) — 1.

Proof. First we prove the inclusion Al ¢ A’. Let F be a face of ALl Then F is
conta}ined in a face of A of dimension i, and so F is in A*. Conversely, let F be a face
of A'. Then

dim(F) <i < Bo(€) — 1= |F| =i +1 = By(©).

Since B,(€) is the cardinality of any smallest maximal independent set of €, we can
extend F to an independent set of € with i + 1 vertices. Thus F is in Al a

While B, regulates the equality of the i-skeleton and the pure i-skeleton of the
independence complex, its complement provides a lower bound for the regularity of
the ideal of covers.

Theorem 3.31. Let € be a clutter, let 1.(€) be its ideal of vertex covers, and let o (€)
be the cardinality of a largest minimal vertex cover of €. Then

reg R/1e(€) = a(€) — 1.

with equality if R/1(€) is sequentially Cohen—Macaulay.
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Proof. Weset B,(€) = n—ag(€). Using Theorem 3.2 and the Auslander-Buchsbaum
formula (see (3.2)), the proof reduces to showing: depth R/1(€) < B (€), with equal-
ity if R/1(€) is sequentially Cohen—Macaulay.

First we show that depth R/I(€) < B,(€). Assume A’ is Cohen—Macaulay for
some —1 < i < dim(A), where A is the independence complex of €. According to
Theorem 3.26, it suffices to prove that 1 +i < B;(€). Notice that ((€) is the car-
dinality of any smallest maximal independent set of €. Thus, we can pick a maximal
independent set F of € with B((€) vertices. Since A is Cohen—-Macaulay, the com-
plex A’ is pure, that is, all maximal faces of A have dimension i. If 1 +i > B(€),
then F is a maximal face of A’ of dimension B;,(€) — 1, a contradiction to the purity
of A*.

Assume that R /I(€) is sequentially Cohen—Macaulay. By Lemma 3.30 Alll = A’
fori < By(€) — 1. Then by Theorem 3.28, the ring K [A?] is Cohen—Macaulay for
i < By(€) — 1. Therefore, applying Theorem 3.26, we get that the depth of R/I(€)
is at least B((€). Consequently, in this case one has the equality depth R/I(€) =

B (€). O

The inequality in Theorem 3.31 also follows directly from the definition of regular-

ity because reg(/.(€)) is an upper bound for the largest degree of a minimal generator
of I.(€).

Remark 3.32. o (€) is max{|e|:e € E(€Y)} and o((€") is max{|e|:e € E(€)}.
This follows by Alexander duality, see (3.3).

Corollary 3.33. If I(€) is an edge ideal, then pdg(R/I1(€)) > ay(€), with equality
if R/1(€) is sequentially Cohen—Macaulay.

Proof. It follows from the proof of Theorem 3.31. O

There are many interesting classes of sequentially Cohen—Macaulay clutters where
this formula for the projective dimension applies (see Theorem 2.6). The projective
dimension of edge ideals of forests was studied in [22, 53], where some recursive for-
mulas are presented. Explicit formulas for the projective dimension for some path
ideals of directed rooted trees can be found in [55, Theorem 1.2]. Path ideals of di-
rected graphs were introduced by Conca and De Negri [15]. Fix an integer f > 2, and
suppose that D is a directed graph, i.e., each edge has been assigned a direction. A
sequence of ¢ vertices X;,, ..., x;, is said to be a path of length ¢ if there are t — 1
distinct edges eq, ..., e;—1 such that ¢; = (xij , Xij+]) is a directed edge from x;; to
Xi; - The path ideal of D of length 7, denoted by I;(D), is the ideal generated by all
monomials x;, ---x;, such that x;,, ..., x;, is a path of length 7 in . Note that when
t = 2, then I (D) is simply the edge ideal of D.
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Example 3.34. Let K be any field and let G be the following chordal graph

X8 X10
X7 X11
X5 X
X6 > 2 X12
X X
4 STRESE 14
X3 X15
X2 X16

Then, by Theorem 2.6 and Corollary 3.31, pdg(R/I1(G)) = 6 and depth R/I(G) =
10.

Corollary 3.35. Let € be a clutter. If I(€) has linear quotients, then
reg R/1(€) = max{|e|: e € E(€)} — 1.

Proof. Theideal of covers I.(€) is sequentially Cohen—Macaulay by Theorem 2.6 (iv).
Hence, using Theorem 3.31, we get reg(R/I1(€)) = ay(€Y) — 1. To complete the
proof notice that ay(€Y) = max{|e|: e € E(€)} (see Remark 3.32). O

The converse of Theorem 3.33 is not true.

Example 3.36. Let Cg be a cycle of length 6. Then R/I(C¢) is not sequentially
Cohen—Macaulay by Proposition 2.4. Using Macaulay2, we get pd(R/1(C¢)) =
066(C6) = 4.

When R/1 is not known to be Cohen—Macaulay, it can prove useful to have effec-
tive bounds on the depth of R/ 1.

Theorem 3.37. Let G be a bipartite graph without isolated vertices. If G has n ver-
tices, then

depth R/1(G) < L%J .
Proof. Let (V1, V>) be a bipartition of G with |V;| < |V3|. Note 2|Vi| < n because
[V1| + | V2| = n. Since V; is a maximal independent set of vertices one has B((G) <
|[V1| < n/2. Therefore, using Corollary 3.33 and the Auslander—Buchsbaum formula,
we get depth R/I1(G) < n/2. O
Corollary 3.38. If G is a B-graph with n vertices, then
depth R/1(G) < dim R/I(G) < L%J .

Proof. Recall that n = a(G) + Bo(G). By Theorem 2.9, Bo(G) < ap(G), and so
Bo(G) < L%J The result now follows because So(G) = dim R/I(€). O
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Lower bounds are given in [87] for the depths of R/I(G)! for t > 1 when I(G)
is the edge ideal of a tree or forest. Upper bounds for the depth of R/I(G) are given
in [46, Corollary 4.15] when G is any graph without isolated vertices. The depth and
the Cohen—Macaulay property of ideals of mixed products is studied in [71].

We close this section with an upper bound for the multiplicity of edge rings. Let €
be a clutter. The multiplicity of the edge-ring R/I(€), denoted by e(R/I(€)), equals
the number of faces of maximum dimension of the independence complex Ae, i.e.,
the multiplicity of R/I(€) equals the number of independent sets of € with B¢ (€)
vertices. A related invariant that was considered earlier is arith-deg(/(€)), the number
of maximal independent sets of €.

Proposition 3.39 ([46]). If € is a d-uniform clutter and I = I1(€), then e(R/1) <
40 (©).

4 Stability of Associated Primes

One method of gathering information about an ideal is through its associated primes.
Let I be an ideal of a ring R. In this section, we will examine the sets of associated
primes of powers of 7, that is, the sets

Ass(R/I") = {p C R|pisprime and p = (I’ : ¢) for some ¢ € R}.

When [/ is a monomial ideal of a polynomial ring R = KJ[x1,...,Xp], the associ-
ated primes will be monomial ideals, that is, prime ideals which are generated by a
subset of the variables. When [ is a square-free monomial ideal, the minimal primes
of I, Min(R/1), correspond to minimal vertex covers of the clutter € associated to
I. In general Min(R/I) C Ass(R/I") for all positive integers 7. For a square-free
monomial ideal, in the case where equality holds for all ¢, the ideal / is said to be
normally torsion-free. More generally, an ideal I C R is called normally torsion-free
if Ass(R/1I') is contained in Ass(R/I) foralli > 1and I # R.

In [9], Brodmann showed that when R is a Noetherian ring and 7 is an ideal of R,
the sets Ass(R /") stabilize for large . That is, there exists a positive integer N such
that Ass(R/1%) = Ass(R/I™) for all t > N. We will refer to a minimal such N as
the index of stability of I. There are two natural questions following from this result.
In this article, we will focus on the monomial versions of the questions.

Question 4.1. Given a monomial ideal 7, what is an effective upper bound on the index
of stability for a given class of monomial ideals?

Question 4.2. Given a monomial ideal /, which primes are in Ass(R /") for all suffi-
ciently large ¢?

An interesting variation on Questions 4.1 and 4.2 was posed in [99].
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Question 4.3. Suppose that N is the index of stability of an ideal /. Given a prime
p € Ass(R/I™), can you find an integer Ny, for which p € Ass(R/I?) fort > Ny?

Brodmann also showed that the sets Ass(/?~!/I?) stabilize. Thus in the general
setting, one could ask similar questions about these sets. However, for monomial
ideals the following lemma shows that in order to find information about Ass(R/I?),
one may instead study Ass(/?~1/I7).

Lemma 4.4. Let I be a monomial ideal. Then Ass(I1'=1/I") = Ass(R/I").

Proof. Suppose that p € Ass(R/I"). Then p = (I' : ¢) for some monomial ¢ € R.
But since p is necessarily a monomial prime, generated by a subset of the variables,
then if xc € I* for a variable x € p, thenc € I' ! andso p € Ass(I*~!/I"). The
other inclusion is automatic. a

Note that this method was used in [105] to show that the corresponding equality
also holds for the integral closures of the powers of /.

For special classes of ideals, there have been some results that use properties of the
ideals to find bounds on N. For example, if / is generated by a regular sequence, then
by [67], I is normally torsion-free, or Ass(R/I") = Min(R/I) for all ¢, and thus
N = 1. If instead [/ is generated by a d-sequence and is strongly Cohen—Macaulay,
then it was shown in [88] that N is bounded above by the dimension of the ring. In
particular, N < n—g+1 where n is the dimension of the ring and g is the height of the
ideal. We are particularly interested in finding similar bounds for classes of monomial
ideals.

In [65], Hoa used integer programming techniques to give an upper bound on N for
general monomial ideals. Let n be the number of variables, s the number of generators
of I, and d the maximal degree of a generator.

Theorem 4.5 ([65, Theorem 2.12)). If [ is a monomial ideal, then the index of stability
is bounded above by

maX{d(l’lS+S+d)(ﬁ)n+1(\/§d)(n+l)(s_l),S(S+I’l)4sn+2d2(2d2)sz_s+l}.

Notice that this bound can be extremely large. For general monomial ideals, exam-
ples are given in [65] to show that the bound should depend on d and n. However, if
we restrict to special classes of monomial ideals, much smaller bounds can be found.
For example, an alternate bound has been shown to hold for integral closures of powers
of monomial ideals.

Theorem 4.6 ([105, Theorem 16]). If I is a monomial ideal, and No = n2"—1qn=2,
then Ass(R/I17) = Ass(R/INo) fort > No whenn > 2.
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Here again n is the number of variables and d is the maximal degree of a generator.
For the class of normal monomial ideals, this bound on the index of stability can be
significantly lower than the general bound given above. When n = 2, the index of
stability of the integral closures is lower still.

Lemma 4.7 ([85]). If n < 2, then Ass(R/I?) = Ass(R/T) forallt > 1.

Note that this result is of interest for general monomial ideals; however, whenn = 2
a square-free monomial ideal will be a complete intersection. Of particular interest for
this article are results that use combinatorial and graph-theoretic properties to yield
insights into the associated primes and index of stability of monomial ideals. One
pivotal result in this area establishes a classification of all graphs for which N = 1.

Theorem 4.8 ([100, Theorem 5.9]). Let G be a graph and I its edge ideal. Then G is
bipartite if and only if I is normally torsion-free.

The result above shows that N = 1 for the edge ideal of a graph if and only if the
graph is bipartite. Since minimal primes correspond to minimal vertex covers, this
completely answers Questions 4.1 and 4.2 for bipartite graphs. In addition if 7 is the
edge ideal of a balanced clutter, then N = 1 [45].

Suppose now that G is a graph that is not bipartite. Then G contains at least one
odd cycle. For such graphs, a method of describing embedded associated primes, and
a bound on where the stability occurs, were given in [14]. The method of building
embedded primes centered around the odd cycles, so we first give an alternate proof
of the description of the associated primes for this base case.

Lemma 4.9. Suppose G is a cycle of length n = 2k + 1 and I is the edge ideal of
G. Then Ass(R/I') = Min(R/I) ift < k and Ass(R/I') = Min(R/I) U {m} if
t > k + 1. Moreover, whent > k + 1, m = (I' : ¢) for a monomial ¢ of degree
2t — 1.

Proof. If p # m is a prime ideal, then /;, is the edge ideal of a bipartite graph, and thus
by Theorem 4.8 p € Ass(R/I") (for any ¢ > 1) if and only if p is a minimal prime of
I. Notice also that the deletion of any vertex x; (which corresponds to passing to the
quotient ring R /(x;)) results in a bipartite graph as well. Thus by [51, Corollary 3.6],
m ¢ Ass(R/I") fort < k since a maximal matching has k edges. For t > k + 1,
define b = ([]/—; xi) and ¢ = b(x1x2)" "%~ where x1x; is any edge of G. Then
since ¢ has degree 2t — 1, ¢ ¢ I, but G is a cycle, x;b € I¥+1 and x;c € I*'. Thus
m = (I':c)andsom € Ass(R/I") fort > k + 1. ]

Corollary 4.10. Suppose G is a connected graph containing an odd cycle of length
2k + 1 and suppose that every vertex of G that is not in the cycle is a leaf. Then
Ass(R/I") = Min(R/I)U{m} ift > k + 1. Moreover, whent > k+1, m = (I' : ¢)
for a monomial ¢ of degree 2t — 1.



Edge Ideals: Algebraic and Combinatorial Properties 107

Proof. Let b and ¢ be defined as in the proof of Lemma 4.9. Notice that if x is a leaf,
then x is connected to a unique vertex in the cycle and that xb € [ k+1 The remainder
of the proof follows as in Lemma 4.9. a

If G is a more general graph, the embedded associated primes of I = I(G) are
formed by working outward from the odd cycles. This was done in [14], including a
detailed explanation of how to work outward from multiple odd cycles. Before pro-
viding more concise proofs of the process, we first give an informal, but illustrative,
description. Suppose C is a cycle with 2k + 1 vertices X1, ..., Xox+1. Color the ver-
tices of C red and color any noncolored vertex that is adjacent to a red vertex blue.
The set of colored vertices, together with a minimal vertex cover of the set of edges
neither of whose vertices is colored, will be an embedded associated prime of ! for
allz > k + 1. To find additional embedded primes of higher powers, select any blue
vertex to turn red and turn any uncolored neighbors of this vertex blue. The set of
colored vertices, together with a minimal vertex cover of the noncolored edges, will
be an embedded associated prime of I? for all t > k + 2. This process continues until
all vertices are colored red or blue.

The method of building new associated primes for a power of I from primes asso-
ciated to lower powers relies on localization. Since localization will generally cause
the graph (or clutter) to become disconnected, we first need the following lemma.

Lemma 4.11 ([51, Lemma 3.4], see also [14, Lemma 2.1]). Suppose I is a square-free
monomial ideal in S = K[x1,...,Xr,Y1,...,Vs| such that I = 11 S + I, S, where
Iy € S1 = K[x1,....,x;land I C S2 = K[y1,...,ys]. Thenp € Ass(S/I") if
and only if p = p1S + p2S, where p; € Ass(Sl/Ilt‘) and py € Ass(Sz/Iztz) with
ti—D4+(t—-1)=t—-1

Note that this lemma easily generalizes to an ideal I = (I, I»,..., I5) where
the I; are edge ideals of disjoint clutters. Then p € Ass(R/I?) if and only if p =
(p1,...,ps) Withp; € Ass(R/Il.ti) where (1 — 1)+ (l—D+---+(ts—1) = (1 —1).

We now fix a notation to show how to build embedded associated primes. Con-
sider p € Ass(R/I") for I the edge ideal of a graph G. Without loss of generality,
Lemma 4.11 allows us to assume G does not have isolated vertices. If p # m, then
since p € Ass(R/I") & pRy € Ass(Ryp/(Ip)"), consider I,. Write I, = (4, Ip)
where 1, is generated by all generators of I, of degree two and /3 is the prime ideal
generated by the degree one generators of /;,, which correspond to the isolated vertices
of the graph associated to ;. Note that the graph corresponding to /, need not be con-
nected. If I, = (0), then p is a minimal prime of 7, so assume I, # (0). Define pq4
to be the monomial prime generated by variables of /,. Define N; = Uxepa N(x),
where N(x) is the neighbor set of x in G, and let p; = p; U N;i. Notice that if
X € Pg, then x is not isolated in I, so Ny C p and thus Ny C pg U Ip. Define
p2 = p\p1 = Ip\Ny,and N, = Uxep1 N(x)\p. If G is the induced subgraph of G
on the vertices in p; U N, G, is the induced subgraph of G on vertices in V' \py, and
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I; = I(G;) fori = 1,2, then Iy = (({1)p,, ({2)p,) and p» is a minimal vertex cover
of 5. By design, any vertex appearing in both G and G is not in p, and thus (/1)yp,
and (/2)p, do not share a vertex. Thus by Lemma 4.11 and the fact that associated
primes localize, p € Ass(Rp/(Ip)") if and only if p; € Ass(R1/(11)") and py is the
maximal ideal of Ry = K[x | x € p;1]. For convenience, define R, = K[x | x € pq].

Proposition 4.12. Let p € Ass(R/1"). Using the notation from above, assume p; =
(I1 : ¢) for some monomial ¢ € Ry of degree at most 2t — 1. Let x € py. Let
Py = p1 UN(x), and let p, be any minimal vertex cover of the edges of G, where G/
is the induced subgraph of G on the vertices V\p. Let N; = Uxep'l N(@)\(p]Up)).
Let G| be the induced subgraph of G with vertices in p| U N,. Then p’ = (p/,p}) €
Ass(R/I'T1).

Proof. If v is an isolated vertex of G/ then N(v) C p/ and thus every edge of G
containing v is covered by p). Hence p’ is a vertex cover of G. Since x € py, there is
an edge xy € G with y € pg. Consider ¢/ = cxy. Then the degree of ¢’ is at most
2t + 1,0 ¢’ ¢ (I)'™FL If 1] = 1(G), then ¢’ ¢ (I])"! as well. If z € py, then
z(exy) = (ze)(xy) € (I])'1. If z € N(x), then z(cxy) = (cy)(zx) € (I])'t!
since y € p1. Thus pj C ((I])'*! : ¢/). Suppose z ¢ p| is a vertex of G}. Then
z € Njy. Thenz ¢ N(x)and z ¢ N(y) since y € pg, so zx and zy are not edges
of G|. Also z ¢ py and ¢ € Ry, so zc ¢ (I{)'*!. Thus the inclusion must be an
equality.

Since p) is a minimal vertex cover of the edges of G/, then p/, € Ass(R/1}) where
I} is the edge ideal of G/, (where isolated vertices of G/ are not included in 7). Note
that Iy = ((11’)]3/1 , (Iﬁ)pfz) and so the result follows from Lemma 4.11. O

Note that if G contains an odd cycle of length 2k + 1, then embedded associated
primes satisfying the hypotheses of Proposition 4.12 exist for ¢ > k + 1 by Lemma 4.9
and Corollary 4.10. Starting with an induced odd cycle C one can now recover all the
primes described in [14, Theorem 3.3]. In addition, combining Corollary 4.10 with
Lemma 4.11 as a starting place for Proposition 4.12 recovers the result from [14, The-
orem 3.7] as well. Define Ass(R/I")* to be the set of embedded associated primes
of I produced in Proposition 4.12 by starting from any odd cycle, or collection of odd
cycles, of the graph. Then Ass(R/I")* C Ass(R/I%) for all s > t. To see this, recall
that if p is not a minimal prime, then there is a vertex x such that xUN(x) C p. Choos-
ing such an x results in p; = p} and the process shows that p € Ass(R/I'*1). Notice
also that the sets Ass(R/I")* stabilize. In particular, Ass(R/I")* = Ass(R/I™)* for
all t > n where n is the number of variables. Notice that choosing x € N each time
will eventually result in m € Ass(R/I")* for some ¢. Counting the maximal num-
ber of steps this could take provides a bound on the index of stability. Following the
process above for a particular graph can often yield a significantly lower power M for
which Ass(R/I")* stabilize. These results are collected below.
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Theorem 4.13. Let I be the edge ideal of a connected graph G that is not bipartite.
Suppose G has n vertices and s leaves, and N is the index of stability of I.

(1) [14, Theorem 4.1] The process used in Proposition 4.12 produces all embed-
ded associated primes in the stable set. That is, Ass(R/IN) = Min(R/I) U
Ass(R/IN)*,

(i1) [14, Corollary 4.3], (Proposition 4.12) If the smallest odd cycle of G has length
2k +1,then N <n—k —s.

(iii) [14, Theorem 5.6, Corollary 5.7] If G has a unique odd cycle, then Ass(R/I") =
Min(R/I) U Ass(R/I")* for all t. Moreover, the sets Ass(R/I") form an as-
cending chain.

(iv) Suppose p € Ass(R/I N and Ny is the smallest positive integer for which
p € Ass(R/INOY* Then p € Ass(R/1I?) forallt > Np.

To interpret Theorem 4.13 in light of our earlier questions, notice that (i) answers
Question 4.2, (ii) answers Question 4.1, and (iv) provides a good upper bound for Ny
in Question 4.3. The significance of (iii) is to answer a fourth question of interest.
Before presenting that question, we first discuss some extensions of the above results
to graphs containing loops.

Corollary 4.14. Let I be a monomial ideal, not necessarily square-free, such that the
generators of I have degree at most two. Define Ass(R/I')* to be the set of embedded
associate primes of I' produced in Proposition 4.12 by starting from any odd cycle, or
collection of odd cycles where generators of I that are not square-free are considered
to be cycles of length one. Then the results of Theorem 4.13 hold for I.

Proof. 1f I has generators of degree one, then write I = ([, I») where I is generated
in degree one. Then /5 is a complete intersection, so by using Lemma 4.11 we may
replace I by I; and assume [ is generated in degree two. If [ is not square-free,
consider a generator x> € [. This generator can be represented as a loop (cycle
of length one) in the graph. Define p, = (x) and N; = N(x). Note that p; =
Pa U N1 = (I1 : ¢) where [ is the induced graph on x U N(x) and ¢ = x. Then p;
satisfies the hypotheses of Proposition 4.12. The results now follow from the proof of
Proposition 4.12. a

Notice that ideals that are not square-free will generally have embedded primes
starting with ¢ = 1 since the smallest odd cycle has length 1 = 2(0)+1,s0k+1 = 1.
The above corollary can be extended to allow for any pure powers of variables to be
generators of the ideal 7.

Corollary 4.15. Let I = (11, I2) where I is the edge ideal of a graph G and 1, =
(xisll ey xf:) for any powers s; > 1. Then the results of Theorem 4.13 hold for I

with Ass(R/I")* defined as in Corollary 4.14.
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Proof. As before, we may assume x; > 2 forall j. Let K = (xizl, el xizr) and let
J = (K, I). Then J satisfies the hypotheses of Corollary 4.14. Let p € Ass(R/J")*
be formed by starting with p, = (x;,) and let p; = (J{ : ¢) where J; and ¢ are
defined as in Corollary 4.14. Suppose x;,,...,x;, € p1. Let g; > 0 be the least
integers such that ¢/ = xfl ! ---x?v” -c ¢ 1 1’ Then it is straightforward to check that
p1 = (I{ : ¢/)and so p € Ass(R/I")*. Thus higher powers of variables can also be
treated as loops and the results of Theorem 4.13 hold. D

We now return to Theorem 4.13 (iii). In general, the sets Ass(R/I?)* form an
ascending chain. Theorem 4.13 (iii) gives a class of graphs for which Ass(R/I")*
describe every embedded prime of a power of I optimally. Thus Ass(R/I?) will
form a chain. This happens for many classes of monomial ideals, and leads to the
fourth question.

Question 4.16. If 7 is a square-free monomial ideal, is Ass(R/I) C Ass(R/I'T1)
for all ¢?

For monomial ideals, Question 4.16 is of interest for low powers of /. For suffi-
ciently large powers, the sets of associated primes are known to form an ascending
chain, and a bound beyond which the sets Ass(/*/I**1) form a chain has been shown
by multiple authors (see [85,99]). This bound depends on two graded algebras which
encode information on the powers of 7, and which will prove useful in other results.
The first is the Rees algebra R[It] of I, which is defined by

RIt)l=Re It I’’’ ®---
and the second is the associated graded ring of I,
gy (R)=R/II/I’®1* /P ---.

Notice that while the result is for Ass(I?/I**1), for monomial ideals Ass(R/I**1)
will also form a chain.

Theorem 4.17 ([85,99]). Ass(I?/1**Y) is increasing fort > a%[nh (gr; (R)).

Note that square-free is essential in Question 4.16. Examples of monomial ideals
for which the associated primes do not form an ascending chain have been given in
[59,65]. Those examples were designed for other purposes and so are more complex
than what is needed here. A simple example can be found by taking the product of
consecutive edges of an odd cycle.

Example 4.18. Let [ = (x1x§X3,x2x§x4, X3x§x5, x4x§x1,x5xfx2), and let m =
(x1,x2,x3,x4,x5). Then m € Ass(R/I?) fort = 1,4, but m ¢ Ass(R/I") for
t=2,3.



Edge Ideals: Algebraic and Combinatorial Properties 111

The ideal in Example 4.18 can be viewed as multiplying adjacent edges in a 5-cycle
to form generators of /, and so has a simple combinatorial realization. A similar result
holds for longer odd cycles, where the maximal ideal is not the only associate prime
to appear and disappear. However, if instead

I = (X1X2X3, X2X3X4, X3X4X5, X4X5X1, X5X1X2)

is the path ideal of the pentagon, then Ass(R/I") = Min(R/I) U {m} fort > 2 and
thus Ass(R/1") form an ascending chain (see [51, Example 3.14]).

There are some interesting cases where associated primes are known to form as-
cending chains. The first listed is quite general, but has applications to square-free
monomial ideals.

Theorem 4.19 ([84, Propc&ition 3.9], see also [56, Proposition 16.3]). If R is a Noe-
therian ring, then Ass(R /1) form an ascending chain.

In order to present the next class of ideals for which the associated primes are known
to form ascending chains, we first need some some background definitions.

Definition 4.20. Let G be a graph. A colouring of the vertices of G is an assignment
of colours to the vertices of G such that adjacent vertices have distinct colours. The
chromatic number of G is the minimal number of colours in a colouring of G. A graph
is called perfect if for every induced subgraph H, the chromatic number of H equals
the size of the largest complete subgraph of H.

An excellent reference for the theory of perfect graphs is the book of Golumbic [48].
Using perfect graphs, we now give an example to show how Theorem 4.19 can be
applied to classes of square-free monomial ideals. An alternate proof appears in [42,
Corollary 5.11].

Example 4.21.If [ is the ideal of minimal vertex covers of a perfect graph, then
Ass(R/I") form an ascending chain.

Proof. By [112, Theorem 2.10], R[I¢] is normal. Thus I? = I7 for all ¢, so by
Theorem 4.19, Ass(R/1") form an ascending chain. a

Similar results hold for other classes of monomial ideals for which R[/¢] is known
to be normal. For example, in [15, Corollary 4.2] it is shown that a path ideal of a
rooted tree has a normal Rees algebra. Thus by Theorem 4.19, Ass(R/I") form an
ascending chain for such ideals. Note that a path ideal can be viewed as the edge ideal
of a carefully chosen uniform clutter.
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It is interesting to compare the result of Example 4.21 to [42, Theorem 5.9], where
it is shown that if / is the ideal of minimal vertex covers of a perfect graph, then the
set of primes associated to any fixed power has the saturated chain property. Here
Ass(R/1") has the saturated chain property if for every p € Ass(R/I"), either p is
minimal or there is a Q € p with Q € Ass(R/I") and height QO = heightp — 1.

Notice that Theorem 4.13 shows that in the case of a graph with a unique odd cycle,
Question 4.16 has an affirmative answer. This result can be generalized to any graph
containing a leaf. First we need a slight variation of a previously known result.

Lemma 4.22 ([88, Lemma 2.3]). Suppose I = I(G) is the edge ideal of a graph and
a € I/1? is a regular element of the associated graded ring gry(R). Then the sets
Ass(R /1Y) form an ascending chain. Moreover, Ass(R/I1") = Ass(1'=1/1") for all
> 1.

Proof. Leta € 1/1? be a regular element of gr;(R). Assume p € Ass(17/I't1).
Then there isac € 1/1"*! with p = (0 :g/7 ¢). Butthen p = (0 :g/s ac), and a
lives in degree one, so p € Ass(/**T1/1?72). So these sets form an ascending chain.
Now the standard short exact sequence

0—I1'/I""Y > R/I"™ - R/IT -0

gives
Ass(I'/T"T1) c Ass(R/I'Y) < Ass(R/IT) U Ass(17 /11T

and the result follows by induction. D

Proposition 4.23. Let G be a graph containing a leaf x and let [ = I(G) be its edge
ideal. Then Ass(R/I') C Ass(R/I'*Y) for all t. That is, the sets of associated
primes of the powers of I form an ascending chain.

Proof. Since x is a leaf of G, there is a unique generator ¢ = xy € [ divisible by x.
Let a denote the image of e in 1/12. We claim « is a regular element of gr; (R). To
see this, it suffices to show that if fe € I'T! for some ¢, then f € I. Since I is a
monomial ideal and e is a monomial, fe € I**1 if and only if every term of fe is
in /%1, Thus we may assume f is a monomial and fxy = ejes---e;+1h for some
edges e; of G and some monomial /. Suppose f ¢ I’. Then x divides e; for some i,
say i = ¢ + 1. Since x is a leaf, ¢; = xy and by cancellation f = ey---e;h € I'.
Thus a is a regular element of gr; (R) and by Lemma 4.22 the result follows. D

When extending the above results to more general square-free monomial ideals, one
needs to pass from graphs to clutters. An obstruction to extending the results is the
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lack of an analog to Theorem 4.8 [100, Theorem 5.9]. One possible analog appears as a
conjecture of Conforti and Cornuéjols, see [17, Conjecture 1.6], which we discuss later
in this section. This conjecture is stated in the language of combinatorial optimization.
It says that a clutter € has the max-flow min-cut (MFMC, see Definition 4.30) property
if and only if € has the packing property. These criterion for clutters have been shown
in recent years to have algebraic translations [45] which will be discussed in greater
detail later in the section. An ideal satisfies the packing property if the monomial grade
of I (see Definition 4.29) is equal to the height of 7 and this same equality holds for
every minor of / [17,45]. Here a minor is formed by either localizing at a collection
of variables, passing to the image of / in a quotient ring R/(xX;,, Xi,,...,X;;), Of @
combination of the two. In [47, Corollary 3.14] and [62, Corollary 1.6], it was shown
that € satisfies MFMC if and only if the corresponding edge ideal /(€) is normally
torsion-free. This allows the conjecture to be restated (cf. [45, Conjecture 4.18]) as: if
€ has the packing property, then /(€) is normally torsion-free.

Since a proof of this conjecture does not yet exist, the techniques used to describe
the embedded associated primes, the stable set of associated primes, and the index of
stability for graphs are difficult to extend. However some partial results are known.
The first gives some conditions under which it is known that the maximal ideal is, or
is not, an associated prime. In special cases, this can provide a seed for additional
embedded associated primes using techniques such as those in Proposition 4.12.

Theorem 4.24. If I is a square-free monomial ideal, every proper minor of I is nor-
mally torsion-free, and B is the monomial grade of I, then

(i) [51, Corollary 3.6] m ¢ Ass(R/I") fort < Bi.
(i) [51, Theorem 4.6] If I fails the packing property, then m € Ass(R/IP1+1).

(iii) [51, Proposition 3.9] If I is unmixed and satisfies the packing property, then I
is normally torsion-free.

Other recent results have taken a different approach. Instead of working directly
with the edge ideal of a clutter €, one can work with its Alexander dual, which is
again the edge ideal of a clutter. Using this approach, the embedded associated primes
of the Alexander dual have been linked to colorings of a clutter. Recall that y(€) is
the minimal number d for which there is a partition X1, ..., X; of the vertices of €
for which for all edges f of €, f ¢ X; forevery i. A clutter is critically d-chromatic
if y(€) = d but y(€\{x}) < d for every vertex x.

Theorem 4.25. (i) [42, Corollary 4.6] If I is the ideal of covers of a clutter €, and
if the induced subclutter €y on the vertices in p is critically (d + 1)-chromatic,
thenp € Ass(R/1%) butp ¢ Ass(R/I) foranyt <d — 1.
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(ii) [42, Theorem 5.9] If I is the ideal of covers of a perfect graph G, then p €
Ass(R/I") if and only if the induced graph on the vertices in p is a clique of size
atmostt + 1.

If one restricts to a particular power, then additional results on embedded associate
primes are known. For example, in [41, Corollary 3.4] it is shown that if [ is the edge
ideal of the Alexander dual of a graph G, then embedded primes of R/I? are in one-
to-one correspondence with induced odd cycles of G. More precisely, p € Ass(R/1?)
is an embedded prime if and only if the induced subgraph of G on the vertices in p is
an induced odd cycle of G.

An interesting class of ideals, which is in a sense dual to the edge ideals of graphs,
is unmixed square-free monomial ideals of height two. These are the Alexander duals
of edge ideals of graphs, which can be viewed as edge ideals of clutters where, instead
of requiring that each edge has two vertices, it is instead required that each minimal
vertex cover has two vertices. For such ideals it has been shown in [40, Theorem
1.2] that an affirmative answer to a conjecture on graph colorings, [40, Conjecture
1.1], would imply an affirmative answer to Question 4.16. In [40, Corollary 3.11] it
is shown that this conjecture holds for cliques, odd holes, and odd antiholes. Thus the
Alexander duals of these special classes of graphs provide additional examples where
Question 4.16 has an affirmative answer.

We now provide a more detailed discussion of the Conforti—-Cornuéjols conjecture,
followed by a collection of results which provide families of clutters where the conjec-
ture is known to be true (such a family was already given in Theorem 4.24 (iii)). We
also discuss some algebraic versions of this conjecture and how it relates to the depth
of powers of edge ideals and to normality and torsion-freeness.

Having defined the notion of a minor for edge ideals, using the correpondence be-
tween clutters and square-free monomias ideals, we also have the notion of a minor of
a clutter. We say that € has the packing property it 1(€) has this property.

Definition 4.26. Let A be the incidence matrix of a clutter €. The set covering poly-
hedron is the rational polyhedron:

0(A) ={xeR" x>0, xA>1},

where 0 and 1 are vectors whose entries are equal to 0 and 1 respectively. Often we
denote the vectors 0, 1 simply by 0, 1. We say that Q(A) is integral if it has only
integral vertices.

Theorem 4.27 (A. Lehman [78; 17, Theorem 1.8]). If a clutter € has the packing
property, then Q(A) is integral.

The converse is not true. A famous example is the clutter @¢, given below. It does
not pack and Q(A) is integral.
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Example 4.28. Let I = (x1x2X5, X1X3X4, X2X3X6, X4X5X¢). The figure:

X1 X2

X3

corresponds to the clutter associated to /. This clutter will be denoted by @¢. Using
Normaliz [11] we obtain that R[It] = R[It][xy -~-x6tﬂ. Thus R[/?] is not normal.

An interesting property of this example is that Ass(R/I%) = Ass(R/I) for all i (see
[45)).

Definition 4.29. A set of edges of a clutter € is independent if no two of them have
a common vertex. We denote the maximum number of independent edges of € by
B1(€). We call B1(€) the edge independence number of € or the monomial grade
of I.

Let A be the incidence matrix of €. The edge independence number and the cover-
ing number are related to min-max problems because they satisfy:

@o(€) > min{(l,x)|x > 0; x4 > 1}
= max{(y, )|y > 0; Ay < 1} > B1(€).

Notice that ag(€) = B1(€) if and only if both sides of the equality have integral
optimum solutions.

Definition 4.30. A clutter €, with incidence matrix A, satisfies the max-flow min-cut
(MFMC) property if both sides of the LP-duality equation

min{{a, x)| x > 0; x4 > 1} = max{(y,1)|y > 0; Ay < «} “4.1)

have integral optimum solutions x and y for each non-negative integral vector «. The
system x > 0;xA > 1 is called totally dual integral (TDI) if the maximum in (4.1)
has an integral optimum solution y for each integral vector o with finite maximum.

Definition 4.31. If ¢¢(€) = B1(€) we say that the clutter € (or the ideal /) has the
Konig property.
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Note that € has the packing property if and only if every minor of € satisfies the
Konig property. This leads to the following well-known result.

Corollary 4.32 ([17]). If a clutter € has the max-flow min-cut property, then € has
the packing property.

Proof. Assume that the clutter € has the max-flow min-cut property. This property is
closed under taking minors. Thus it suffices to prove that € has the Konig property.
We denote the incidence matrix of € by A. By hypothesis the LP-duality equation

min{(L, x}[x = 0:xA4 > 1} = max{(y. 1)| y = 0: Ay < 1}

has optimum integral solutions x, y. To complete the proof notice that the left hand
side of this equality is oo (€) and the right-hand side is 81 (€). O

Conforti and Cornuéjols [16] conjecture that the converse is also true.

Conjecture 4.33 (Conforti—-Cornuéjols). If a clutter € has the packing property, then
€ has the max-flow min-cut property.

An algebraic description of the packing property has already been given. In or-
der to use algebraic techniques to attack this combinatorial conjecture, an algebraic
translation is needed for the max-flow min-cut property. There are several equiva-
lent algebraic descriptions of the max-flow min-cut property, as seen in the following
result.

Theorem 4.34 ([35,47,69]). Let € be a clutter and let I be its edge ideal. The follow-
ing conditions are equivalent:

(i) gr7(R) is reduced.
(i1) R[It] is normal and Q(A) is an integral polyhedron.
(iii) x > 0; xA > 1 is a TDI system.
(iv) € has the max-flow min-cut property.
v) I' = I(i)fori > 1, where 1D is the ith symbolic power.

(vi) I is normally torsion-free.

By Theorems 4.34 and 4.27, Conjecture 4.33 reduces to:

Conjecture 4.35 ([45]). If I has the packing property, then R[/?] is normal.

Several variations of condition (ii) of Theorem 4.34 are possible. In particular, there
are combinatorial conditions on the clutter that can be used to replace the normality of
the Rees algebra. One such condition is defined below.
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Definition 4.36. Let €V be the clutter of minimal vertex covers of €. The clutter € is
called diadic if |e N e'| <2fore € E(€) and e’ € E(EY)

Proposition 4.37 ([45]). If Q(A) is integral and € is diadic, then I is normally tor-
sion-free.

Theorem 4.34 can be used to exhibit families of normally torsion-free ideals. Recall
that a matrix A is called totally unimodular if each i x i subdeterminant of A4 is O or
+1 foralli > 1.

Corollary 4.38. If A is totally unimodular, then I and 1V are normally torsion-free.

Proof. By [97] the linear system x > 0; xA > 1 is TDI. Hence [ is normally torsion-
free by Theorem 4.34. Let €V be the blocker (or Alexander dual) of €. By [97, Corol-
lary 83.1a(v), page 1441], we get that €V satisfies the max-flow min-cut property.
Hence 1(€V) is normally torsion-free by Theorem 4.34. Thus /" is normally torsion-
free because I(€Y) = IV. O

In particular if 7 is the edge ideal of a bipartite graph, then I and IV are normally
torsion-free.

Theorem 4.34 shows that the Rees algebra and the associated graded ring play an
important role in the study of the max-flow min-cut property. An invariant related to
the blowup algebras will also be useful. The analytic spread of an edge ideal [ is
given by £(1) = dim R[/¢]/wmR[[¢t]. If € is uniform, the analytic spread of [ is the
rank of the incidence matrix of €. The analytic spread of a monomial ideal can be
computed in terms of the Newton polyhedron of 7, see [4]. The next result follows
directly from [83, Theorem 3].

Proposition 4.39. If O (A) is integral, then £(1) < n = dim(R).

To relate this result on £(1) to Conjecture 4.33 (or equivalently to Conjecture 4.35)
we first need to recall the following bound on the depths of the powers of an ideal /.

Theorem 4.40. inf; {depth(R/I?)} < dim(R) — £(I). If gr;(R) is Cohen—Macaulay,
then the equality holds.

This inequality is due to Burch [12] (cf. [70, Theorem 5.4.7]), while the equality
comes from [31]. By a result of Brodmann [8], depth R/ [ k is constant for k > 0.
Broadmann improved Burch’s inequality by showing that the constant value is bounded
by dim(R) —£(1). For a study of the initial and limit behaviour of the numerical func-
tion f(k) = depth R/I¥ see [59)].

Theorem 4.41 ([68]). Let R be a Cohen—Macaulay ring and let I be an ideal of R
containing regular elements. If R[It] is Cohen—Macaulay, then gry(R) is Cohen—
Macaulay.
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Proposition 4.42. Let € be a clutter and let I be its edge ideal. Let J; be the ideal
obtained from 1 by making x; = 1. If Q(A) is integral, then I is normal if and only if
Ji is normal for all i and depth(R/1%) > 1 forall k > 1.

Proof. Assume that [ is normal. The normality of an edge ideal is closed under taking
minors [35], hence J; is normal for all i. By hypothesis the Rees algebra R[/¢] is
normal. Then R[/¢] is Cohen—-Macaulay by a theorem of Hochster [66]. Then the
ring gry (R) is Cohen—Macaulay by Theorem 4.41. Hence using Theorem 4.40 and
Proposition 4.39 we get that depth(R/I?) > 1 for all i. The converse follows readily
adapting the arguments given in the proof of the normality criterion presented in [35].

O

By Proposition 4.42 and Theorem 4.27, we get that Conjecture 4.33 also reduces to:
Conjecture 4.43. If I has the packing property, then depth(R/I%) > 1 foralli > 1.

We conclude this section with a collection of results giving conditions under which
Conjecture 4.33, or its equivalent statements mentioned above, is known to hold. For
uniform clutters it suffices to prove Conjecture 4.33 for Cohen—Macaulay clutters [23].

Proposition 4.44 ([45]). Let € be the collection of bases of a matroid. If € satisfies
the packing property, then € satisfies the max-flow min-cut property.

When G is a graph, integrality of Q(A) is sufficient in condition (ii) of Theo-
rem 4.34, and the packing property is sufficient to imply the max-flow min-cut prop-
erty, thus providing another class of examples for which Conjecture 4.33 holds.

Proposition 4.45 ([17,45)). If G is a graph and I = I(G), then the following are
equivalent:

(i) gr7(R) is reduced.
(ii) G is bipartite.
(iii) Q(A) is integral.
(iv) G has the packing property.
(v) G has the max-flow min-cut property.
i) 11 =1D fori > 1.

Definition 4.46. A clutter is binary if its edges and its minimal vertex covers intersect
in an odd number of vertices.

Theorem 4.47 ([98]). A binary clutter € has the max-flow min-cut property if and only
if Q¢ is not a minor of €.
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Corollary 4.48. If € is a binary clutter with the packing property, then € has the
max-flow min-cut property.

Proposition 4.49 ([112]). Let € be a uniform clutter and let A be its incidence matrix.
If the polyhedra

P(A)={x|x>0;xA <1} and Q(A) ={x|x>0;xA4A>1}
are integral, then € has the max-flow min-cut property.

In light of Theorem 4.27, this result implies that if P(A) is integral and € has the
packing property, then € has the max-flow min-cut property. An open problem is to
show that this result holds for non-uniform clutters (see [82, Conjecture 1.1]).

A Meyniel graph is a simple graph in which every odd cycle of length at least five
has at least two chords. The following gives some support to [82, Conjecture 1.1]
because Meyniel graphs are perfect [97, Theorem 66.6].

Theorem 4.50 ([82]). Let € be the clutter of maximal cliques of a Meyniel graph. If
€ has the packing property, then € has the max-flow min-cut property.

Let P = (X, <) be a partially ordered set (poset for short) on the finite vertex set X
and let G be its comparability graph. Recall that the vertex set of G is X and the edge
set of G is the set of all unordered pairs {x;, x; } such that x; and x; are comparable.

Theorem 4.51 ([25]). If G is a comparability graph and € is the clutter of maximal
cliques of G, then the edge ideal 1(€) is normally torsion free.

Theorem 4.52 ([24]). Let € be a uniform clutter with a perfect matching such that €
has the packing property and ao(€) = 2. If the columns of the incidence matrix of €
are linearly independent, then € has the max-flow min-cut property.
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