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A Minimal Poset Resolution of Stable Ideals

Timothy B. P. Clark

Abstract. We give a brief survey of the various topological and combinatorial techniques
which have been used to construct the minimal free resolution of a stable monomial ideal
in a polynomial ring over a field. The new results appearing in this paper describe a connec-
tion between certain topological and combinatorial methods for the description of said minimal
resolutions. In particular, we construct a minimal poset resolution of an arbitrary stable mono-
mial ideal by using a poset of Eliahou—Kervaire admissible symbols associated to a stable
ideal. The structure of the poset under consideration is quite rich and in related analysis, we
exhibit a regular CW complex which supports this resolution.
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1 Introduction

Let R = k[x1,...,xg4], where k is a field and R is considered with its standard 74
grading (multigrading). For a monomial ideal N of R, the minimal free resolution of
the module R/N is a well-studied invariant whose non-recursive construction using
only the field k and the unique monomial generators of the ideal is an open problem.

Precisely, a minimal free resolution is an exact sequence of multigraded R-modules
connected by multigraded morphisms which encodes the minimal relations between
generators of the syzygy modules of R/N. We denote a minimal free resolution of
R/N as
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where the free module F; 4 = R(—a)Pi« is of rank Bi.«, the map 0; is degree pre-
serving for all i and Coker(d;) =~ R/N.

Structure theorems for the minimal free resolution of several classes of monomial
ideals have been developed in the last 20 years, although no technique has proven to
be general enough to describe the minimal resolution of an arbitrary monomial ideal.
Many of the approaches appearing in the literature associate to an ideal a topological
or combinatorial object whose structure is shown to mirror the algebraic structure of
a (minimal) resolution. Computationally speaking, a minimal free resolution of R/N
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may be constructed recursively by hand or using a computer algebra system such as
Macaulay? [16].

The earliest study of resolutions of monomial ideals was described in the thesis [23]
of Diana Taylor, a student of Kaplansky. For a monomial ideal with minimal generat-
ing set {m1, ..., m;}, Taylor’s resolution consists of a free module of rank (]Z) appear-
ing in homological degree k whose basis elements are in one-to-one correspondence
with the cardinality k subsets I = {iy,---,ix} € {1,...,r} and have multidegree
matching the monomial m; = lem(m; : i € I). The differential in Taylor’s resolution
takes the unique basis element e; to

r
E (—1/*! “er\(i;}-
j=1
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If one changes perspective of the Taylor resolution only slightly, the underlying
vector space structure is easily recognized as the simplicial chain complex of an r-
dimensional simplex. This re-interpretation of the Taylor resolution as an object from
algebraic topology serves as an organizing example for the use of topological tech-
niques which link the incidence structure of a regular CW complex with the syzygy
structure of a monomial ideal.

Bayer and Sturmfels in [3] develop a program for this approach by first establishing
a Z" grading on a regular CW complex X whose r vertices are each associated with a
generator of N. Indeed, for e, a nonempty cell of X, identify e with the set of vertices
it contains and label e with the monomial m, := lem{m; : j € e}. Algebraically, the
vertices contained in the cell are viewed as a finite subset of the minimal generating
setof N.

A complex of multigraded R-modules, ¥y, is said to be a cellular resolution of
R/ N if the following three properties are satisfied: for all i > O the free module
(Fn)i has as its basis the i — 1 dimensional cells of X, a basis element e € (Fy);
has multidegree equal to that of the monomial m,. and the differential d of Fx acts on

e € (Fn)ias
m
o= Y cee ot

Me/
e'CeCX
dim(e)=dim(e’)+1

where ¢, ¢ is the coefficient of the cell ¢’ in the differential of e in the cellular chain
complex of X. Bayer and Sturmfels further show that the complex Fy is a free reso-
lution of N if and only if the subcomplex of X on the vertices whose monomial labels
divide m is empty or acyclic over k for all m € R.

Although this general approach is elegant, the task of determining an appropriate
cell complex that supports a minimal free resolution for a monomial ideal is difficult.
Moreover, Velasco [24] has constructed a class of monomial ideals whose minimal
free resolution cannot be supported on any CW complex. In what follows, we there-
fore restrict attention to the so-called stable ideals, whose minimal resolution was first
constructed explicitly by Eliahou and Kervaire [15] using combinatorial methods. Re-
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cently, these ideals were shown to have a minimal cellular resolution separately by
Batzies and Welker [1] and Mermin [19]. The connections between the combinato-
rial technique of Eliahou and Kervaire and these two recent topological approaches
comprise the original results appearing in this paper.

Eliahou and Kervaire [15] call a monomial ideal N stable if for every monomial
m € N, the monomial m - x;/x, € N foreach 1 < i < r, where r = max{k :
X divides m}. They provide a construction of the minimal free resolution of a stable
monomial ideal by identifying basis elements of the free modules (called admissible
symbols) and describing how the maps within the resolution act on these symbols. The
class of stable ideals has been extensively studied, and several of its subclasses have
been shown to have relevant applications, submit to novel analytical techniques, or
both.

We recall two refinements of the definition of stability. An ideal is said to be strongly
stable if whenever i < j and m is a monomial such that mx; € N, it follows that
mx; € N. Clearly, the stable ideals contain the strongly stable ideals as a subclass.
When the characteristic of k is zero, strongly stable ideals are referred to as Borel ide-
als. The class of Borel ideals have been given much attention due to their importance
in Grobner Basis Theory [13].

Turning to the topological methods which have been used to describe the minimal
free resolution of a stable ideal, we focus on the most general constructions appearing
in the literature.

Batzies and Welker in [1] develop an application of discrete Morse theory to the
reduced cellular chain complex of a Z¢ graded regular CW complex. This technique
reduces the length of and number of free modules appearing in a nonminimal cellular
resolution by collapsing certain cells of the given CW complex. The (not necessarily
regular) CW complex which results from this collapsing procedure is homotopy equiv-
alent to the original regular CW complex but has fewer cells. For the class of stable
monomial ideals, this approach results in the reduction of the Taylor resolution of a
stable monomial ideal to a minimal cellular resolution which matches the construction
of Lyubeznik [18].

Mermin in [19] studies the minimal free resolution of an arbitrary stable ideal by
defining a regular CW complex whose cells are built using the variable exchange prop-
erty which characterizes a stable ideal. This regular CW complex is shown to support
the original minimal resolution of Eliahou and Kervaire. Furthermore, the regular CW
complex construction of Mermin seems to match that of Batzies and Welker, although
the precise connections between these methods have not been studied.

In addition to these general techniques, topological approaches for constructing a
minimal resolution of ideals in certain subclasses of the stable ideals are also present
in the literature.

Sinefakopoulos in [22] defines a Borel principal ideal as the smallest Borel-fixed
monomial ideal having a fixed monomial m in its generating set. The inductive con-
struction which he describes results in a shellable, polyhedral cell complex that sup-



146 T.B.P. Clark

ports the minimal free resolution of an arbitrary ideal from this subclass. The cellular
incidence structure of this polyhedral complex is significantly different from the CW
complexes appearing in [1] and [19].

In [17] Horwitz constructs the minimal free resolution of a Borel ideal which is
generated by squarefree quadratic monomials. By reinterpreting said Borel ideal as
an edge ideal, the algebraic analogues of certain graph-theoretic techniques prove to
be useful in the construction of a minimal resolution. This resolution in fact has a
regular cellular structure and has differential maps which coincide with those of the
Eliahou—Kervaire resolution.

Using techniques which they first developed in [11], Corso and Nagel [12] recover
the result of Horwitz and provide a more explicit construction for the minimal cel-
lular resolution of an arbitrary strongly stable ideal generated in degree two. Their
construction associates a strongly stable ideal to a Ferrers tableau which in turn gives
rise to an associated polyhedral cell complex. This cell complex is shown to support
the minimal free resolution of the strongly stable ideal in question. This technique is
generalized to the class of squarefree strongly stable ideals generated in a fixed degree
further by Nagel and Reiner in [21].

In this paper, we begin with a combinatorial perspective of stable ideals, whereby
we construct a minimal poset resolution of an arbitrary stable ideal N. Precisely, we
define a poset (P, <) on the admissible symbols of Eliahou and Kervaire by taking
advantage of a decomposition property unique to the monomials contained in stable
ideals.

In Section 2, we review the fundamentals of poset resolutions and define the poset of
admissible symbols Py . In our first main result, Theorem 2.4, we recover the Eliahou—
Kervaire resolution of a stable ideal as a poset resolution. The value of this technique
lies in the structural fact that the maps in the resolution act on the basis elements of
the free modules in a way that mirrors the covering relations in Py . Considering the
lattice-linear ideals of [9], poset resolutions provide a common perspective from which
to view the minimal resolutions of three large and well-studied classes of monomial
ideals; stable ideals, Scarf ideals [2] and ideals having a linear resolution [14].

An advantage of the method described herein is that for a fixed stable ideal, the
combinatorial information contained in the poset of admissible symbols can be trans-
formed into the topological incidence structure of a regular CW complex. Specifically,
the poset of admissible symbols Py is a CW poset in the sense of Bjorner [5], so that
it is the face poset of a regular CW complex X .

In our second main result, Theorem 6.4, we show that X supports a minimal cel-
lular resolution of the stable ideal N. By using this combinatorial connection, we
recover a minimal cellular resolution of N in a manner distinct from two of the pre-
viously described methods. Indeed, the cell complex that comes as a consequence of
Bjorner’s correspondence coincides with the one produced in the work of Mermin [19]
and appears to match the cell complex of Batzies and Welker [1]. The details of these
connections are the subject of future research.
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2 Poset Resolutions and Stable Ideals

Let (P, <) be a finite poset with set of atoms A and write 8 < « if B < « and there is
noy € P suchthat 8 < y < . We say that § is covered by « in this situation. For
a € P, write the order complex of the associated open interval as A, = A(f), a). In
[9], the collection of simplicial complexes

{Aq ¢ € P}
is used to construct a sequence of vector spaces and vector space maps
@i @1
DWP): -+ —> D — Di—y — - —> D1 — Dy.

For i > 1, the vector space D; is defined as

Di= P Do

aeP\{0}

where D; o = H i—2(Aq, k). In particular, the vector space & has its basis indexed
by the set of atoms A in P. For notational simplicity, when A < « let D} = A(0, A]

and
Aa,)t =D, N (U Dﬁ).

B<a

A#B

When i > 2, the maps ¢; are defined using the maps in the Mayer—Vietoris long
exact sequence in reduced homology associated to the short exact sequence of reduced
simplicial chain complexes

0 Ci(Ag) — €i(Dy) @%’,,(U Dﬂ) — Ci(Ag) =0
B<a
A#B
where the triple under consideration is
(DA, | ps. A(,). @2.1)

B<a

A#B

For i > 2 we write ¢ : PNIi_3(Aa’A, k) — ﬁi_3(Ak, k) for the map induced in
homology by the inclusion map and

8% Hi—a(Ag k) = Hi—3(Ag 1, k)

for the connecting homomorphism from the Mayer—Vietoris sequence in homology of
(2.1). Set N
97" Dig > Di—1 2



148 T.B.P. Clark

as the composition (pf‘”1 =10 8:."_’);. The map ¢; : D; — D;— is then defined

componentwise by
o,A
il = D
A<a

For i = 0, we define a one-dimensional vector space as Dy = H -1({2}, k) and
define ¢ : D1 — Do componentwise as ¢1|p, , = idﬁ_l({z},k)'

We now describe the process by which the sequence of vector spaces D (P) is trans-
formed into a sequence of multigraded modules. For a monomial m = x?‘ .o x?i" €R
we write mdeg(m) = (ap,...,ay) and deg,,(m) = a; for 1 < £ < d. Assuming
the existence of a map of partially ordered sets n : P —> N”, the sequence of vector
spaces D (P) is homogenized to produce

lrod lrod 9 lrod lrod 91 lrod
Fm: - —Ft — Ft-1 —> - —> F1 — Fo,

a sequence of free multigraded R-modules and multigraded R-module homomor-
phisms.
Fori > 1, we set

Fi= P Fir= P RexDix
0#AeP 0#AeP

where the grading is defined as mdeg(x® ® v) = a + n(1) foreach v € D; ;.
The differential 0; : ¥ —> %;_1 in this sequence of multigraded modules is

defined as
dilg, = 3 00

A<a

where B?J : Fi,q — Fi_1,) takes the form 8‘;"A = x"1@-1() g gof”;L for A < a.
We set Fy = R Q@ Dp and multigrade the result with mdeg(x? ® v) = a for each
v € Dy. The differential B?J : F1,0 —> ¥y, is defined componentwise as

al|Fl,)L = XW(A) ® (P1|£)1VA-

The sequence ¥ (1) approximates a free resolution of the multigraded module R/ M
where M is the ideal in R generated by the monomials

(x"@ g e 4}
whose multidegrees are given by the images of the atoms of P.

Definition 2.1 ([9]). If ¥ () is an acyclic complex of multigraded modules, then we
say that it is a poset resolution of the ideal M.
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Throughout the remainder of the paper, N will denote a stable monomial ideal in
R and we write G(N) as the unique minimal generating set of N. For a monomial
m € R set

max(m) = max{k | x; divides m}

and

min(m) = min{k | x; divides m}.

To describe further the class of stable ideals, let [d —1] = {1,...,d—1},for I C [d—1]
let max(/) = max{i | i € I} and write x; = [[;¢; x;.

In Lemma 1.2 of [15], Eliahou and Kervaire prove that a monomial ideal N is
stable if and only if for each monomial m € N there exists a unique n € G(N)
with the property that m = n - y and max(n) < min(y). We adopt the language
and notation introduced in the paper of Eliahou and Kervaire, and refer to n as the
unique decomposition of the monomial m. Following their convention, we encode this
property in a decomposition map g : M(N) — G(N) where M (N) is the collection
of monomials of N and g(m) = n.

Definition 2.2 ([15]). An admissible symbol is an ordered pair (I, m) which satisfies
max(/) < max(m), where m € G(N) and I C [d — 1].

Definition 2.3. The poset of admissible symbols is the set Py of all admissible symbols
associated to V, along with the symbol 0 = (@, 1) which is defined to be the minimum
element of Py . The partial ordering on Py is

(J,n) <(U,m) <= J C I and there exists
C C 1\ Jsothatn = g(xcm)

when both symbols are admissible.

In the case when (J,n) < (I,m) and I = J U {{} for some ¢, then we write
(J,n) < (I,m) to describe the covering that occurs in Py . As constructed, we have
0 < (2, m) for every m € G(N). We are now in a position to state our first main result.

Theorem 2.4. Suppose that N is a stable monomial ideal with poset of admissible
symbols Py and define the map n : Py —> N" so that (I, m) — mdeg(x;m). Then
the complex ¥ (1) is a minimal poset resolution of R/N.

In order to prove Theorem 2.4, we first describe the combinatorial structure of Py
and then exhibit the connection between the complex ¥ () and the minimal free res-
olution of the stable ideal N constructed by Eliahou and Kervaire in [15].
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3 The Shellability of Py

We begin this section by recalling some general facts regarding the shellability of
partially ordered sets. Recall that a poset P is called shellable if the facets of its order

complex A(P) can be arranged in a linear order Fy, F5, ..., F; in such a way that the
subcomplex
k—1
(U Fi) N Fy
i=1
is a nonempty union of maximal proper faces of Fj, fork = 2,...,¢. Such an ordering

of facets is called a shelling.

Definition 3.1. Let &(P) denote the collection of edges in the Hasse diagram of a
poset P. An edge labeling of P isamap A : §(P) —> A where A is some poset.

For 0 = a; <--- < a, a maximal chain of P, the edge label of o is the sequence
of labels A(0) = (A(ay < az),...,Alar_1 < ag)).

Definition 3.2. An edge labeling A is called an EL-labeling (edge lexicographical la-
beling) if for every interval [x, y] in P,

(i) there is a unique maximal chain ¢ in [x, y], such that the labels of ¢ form an
increasing sequence in A. We call o the unique increasing maximal chain in

[x. y].
(ii) A(0) < A(o”) under the lexicographic partial ordering in A for all other maximal
chains ¢’ in [x, y].
A graded poset that admits an EL-labeling is said to be EL-shellable (edge lexico-
graphically shellable).
We further recall the following fundamental result of Bjorner and Wachs.

Theorem 3.3 ([7]). EL-shellable posets are shellable.

We now define an edge labeling of the poset of admissible symbols Py .

Definition 3.4. Let A : Py — Z take the form

0 ifn=1
A((J,n)<U,m)=43 —L ifn=m
£ ifn #m,

where (£} =1\ J.

Example 3.5. The labeled Hasse diagram for the poset of admissible symbols, Py, of
the stable ideal N = (a, b, c)? = (a?,ab,ac,b? bc,c?) is
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({1.2}.ac) ({1,2},¢?) ({1.2}.bc)

(@,a?) (3, ac) (@, c?) (3, ab) (2,bc) (@,b%)
0 0 0 0

(@.1)

Recall that given a poset P, the dual poset P* has an underlying set identical to
that of P, with x < y in P* if and only if y < x in P. Further, an edge labeling of a
poset P may also be viewed as an edge labeling of its dual poset and P is said to be
dual shellable if P* is a shellable poset.

Theorem 3.6. The poset Py is dual EL-shellable with A defined as above.

Before turning to the proof of Theorem 3.6, we discuss some properties of the de-
composition map g and the edge labeling A.

Remarks 3.1.
(1) [15, Lemma 1.3] For any monomial w and any monomial m € N, we have
g(wg(m)) = g(wm) and max(g(wm)) < max(g(m)). We refer to the first
property as the associativity of g.

(ii) Suppose that [(1,m), (J,n)] is a closed interval in the dual poset Py. Given a
sequence of labels

(.. 1)

there is at most one maximal chain o in the closed interval such that
Ao) =1, 1)
When it exists, this chain must be equal to
(I.m) < (I \{1}ny) <---<(I\{ly, ... Le—r ) ng—1) < (J,n)
where ¢; = |lj|,theset I \ J = {{1,...,{;} and
. { g(xgnimn) ifl; >0
S ifl; <0

for1 <i <k withng = m and ny = n.
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Suppose that (J,n) < (I, m) is a pair of comparable admissible symbols. Thenn =
g(xcrm) forsome C' C I\ J.LetC = {c € C’ | ¢ < max(n)}. Then by associativity
and [15, Lemma 1.2] we have n = g(xc/m) = g(xcncg(xcm)) = g(xcm). In this
way, any representation of n = g(xc¢sm) may be reduced to n = g(xcm) under the
conditions above.

Notation 3.2. Implicit in all subsequent arguments is the convention that a representa-
tion n = g(xcm) is written in reduced form.

Lemma 3.7. For a reduced representation of n = g(xcm) the set C is the unique
subset of minimum cardinality among all C' C I \ J for which n = g(xc'm).

Proof. Suppose that C is not the subset of 7 \ J with smallest cardinality, namely that
there exists D C I \ J with |D| < |C| and n = g(xpm). By definition, x¢ - m =
n-yand xp -m = n-u where max(n) < min(y) and max(n) < min(u). The
assumption of | D| < |C| implies that there exists ¢ € C suchthatc ¢ D. Rearranging
and combining the two equations above, we arrive at the equality xc - ¥ = Xxp - y.
This equality allows us to conclude that x. divides y since it cannot divide xp. By
definition, max(n) < min(y) and therefore max(n) < c. Further, since we assumed
that n = g(xcm) possessed the property that ¢ < max(n) we have ¢ < max(n) < ¢
so that max(n) = c. This equality also has implications for xp and u, namely that
¢ < min(u) and max(D) < max(n) = ¢ so that max(D) < ¢ since ¢ ¢ D. However,
¢ < max(D) < max(n) = c is a contradiction, and our original supposition that such
a D exists is false. If C and D are distinct subsets of / \ J with [C| = |D| and
n = g(xcm) = g(xpm) then thereisac € C and d € D for which ¢ ¢ D and
d ¢ C. As before, we use the equality xc - u = xp - y and now conclude that x,
divides y and x4 divides u. Therefore, ¢ < max(C) < max(n) < min(y) < ¢ and
similarly d < max(D) < max(n) < min(u) < d so that max(n) = ¢ =d, ]

Proof of Theorem 3.6. To prove the dual EL-Shellability of Py, recall that for the
poset of admissible symbols Py, we have comparability in the dual poset given by
(I,m) < (J,n) € Py if and only if (J,n) < (I,m) € Py. We proceed with the
proof by considering the various types of closed intervals that appear in the dual poset
Py. A

Case 1: Consider the closed interval [({,m),0]. Write I = {d,...,d;} so that
dj < djy1,forevery j =1,...,t. The maximal chain

o=(m)<(I\{d}.m)<(I\{ds,de—1}.m) << (B, m) <0

has the increasing label
(_dl‘9 _dt—lv ey _dlso) .

Consider a maximal chain © € [(,m),0] where T # o. If each label in the se-
quence A(t) (except the label of coverings of the form (@, n) < 0) is negative, then the
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sequence A(7) cannot be increasing, for it must be a permutation of the sequence A (o)
where the rightmost label O is fixed. If any label within the sequence A(t) is positive,
then again A(7) cannot be increasing since every maximal chain contains the labeled
subchain

0 A~
(@,n) <0

for every (I,m) < (&,n). Therefore, ¢ is the unique rising chain in the interval
[(1,m),0]. Further, A(0) is lexicographically first among all chains in [(/, m), 0] since
—d; << —d; <O.

Case 2: Consider the closed interval [(/,m), (J,n)] of Py where (J,n) # 0 and

n = m. Again write I \ J = {d1,...,d;} such that d; < --- < d;. Every maximal
chain o in [(/,m), (J, m)] has a label of the form
(=dp()> - =dpn))
where p € X; is a permutation of the set {1,...,¢}. Therefore, the label
(=dy.....—d1)

corresponding to the identity permutation is the unique increasing label in the interval
[(1,m), (J,m)] and is lexicographically first among all such labels.

Case 3: Consider the closed interval [(/,m), (J,n)] of Py where (J,n) # 0 and
m # n. By Lemma 3.7, n = g(xcm) for a unique C C I \ J where max(C) <
max(n) and the set C is of minimum cardinality. Writing the set C = {c1,...,¢q}
and (/ \ J)\C = {{1,....£;} where {1 < --- < {;and ¢ < --- < ¢q, it follows
that the sequence of edge labels (—K toees—t1,c1,.0 0, cq) is the increasing label of a
maximal chain o in [(1, m), (J, n)].

Turning to uniqueness, suppose that T = ¢ is also a chain which has a rising edge
label. Then

l(‘[)Z (—dp,...,—dl,sl,...,Sj) (3.3)

where
{51,080 Uddr, ... dp) ={cr, .. oocqy U, by =T\ J,

and —d, < ... < —d; <0 <s1 <...<sj.Since T # o, then A(7r) # A(0) and in
particular, {dy,....dp} # £1,.... 4s}.

If there exists £ € {{1,...,£;} with the property that £ ¢ {d1,...,dp}, we must
have £ € {s1.,...,s;} sothat{ =s; for some i < j and the label A(0’) has the form

(—dp,...,—dl,sl,...,ﬁ,...,sj-). (3.4

By the definition of g, we have the equalities xc -m = n-y and xs -m = n - u,
which may be combined and simplified to arrive at the equation xc - u = Xxg - ).
The assumption that £ € S and £ ¢ C implies that x; divides u so that max(n) < £.
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It therefore follows that max(n) < ¢ < s;j+1 < --- < s; when £ # s; so that
max(/ \ {s1,...,€}) = s; > max(n), which contradicts the admissibility of the
symbol (I \ {di,...,dp,s1,....£},n). If £ = s; then max(n) < s; and there-
fore n = g(x5, ---x;m) = g(xg, ---xj—1m) which implies that the symbol (/ \
{s1,...,8j—1},8(xg, ---xj—1m)), preceding (J,n) in the chain is not admissible. If
there exists dg € {d1,....dp} withdg ¢ {{1,...,{;} then a similar argument again
provides a contradiction to admissibility.

We now prove that A (o) is lexicographically smallest among all chains. Aiming for
a contradiction, suppose that the label A(0) is not lexicographically smallest so that
there exists a maximal dual chain T with A(t) < A(0). Without loss of generality, we
may assume that A(o) and A(t) differ at their leftmost label —c, where —¢ < —¥;.
Such a ¢ must be an element of the set C since —f; < --- < —{1 is inherent in the
structure of A(0). By construction, ¢ € C implies that ¢ < max(n) and utilizing the
equations xc -m =n -y and xg -m = n - u, to produce xc - u = xg - y, it follows
that x. divides y and therefore ¢ < max(n) < min(y) < c¢ so that max(n) = c.
This forces the element ¢ = ¢4 for otherwise, the chain o would contain the subchain
(I \{y,....¢,c1,...,c},n) < (I \ J,n) where (I \ {{1,...,%;,¢1,...,c},n)is
not an admissible symbol.

The desired contradiction will be obtained within an investigation of each of the
three possibilities for the relationship between deg, (n) and deg,, (m).

Suppose deg, (1) > deg, (m) so that deg, (n) = deg, (m) + 1, based upon the
structure of the set / and the definition of the decomposition map g. In this case,
the chain 7 cannot end in (J, n) since —c, the leftmost label of 7, labels the subchain
(I,m) < (I \ {c},m) and the x. degree of every monomial appearing in the chain t
may not increase.

If deg, (n) < deg,, (m) then the unique decomposition xc - m = n - u implies
that x. divides u , for otherwise ¢ € C implies that deg, (1) = deg, (m) + 1, a
contradiction. The conclusion that x. divides u allows x¢ - m = n - u to be simplified
to xc/-m = n-u’ where C' = C \ {c¢} and u’ = u/x.. This contradicts the condition
that C is the set of smallest cardinality for which g(xcm) = n.

Lastly, if deg, (n) = deg,_(m) we turn to the chain o, whose rightmost label is c.
The subchain with this label is ( \ {€1, ..., 4;. c1, .. .cj—1p,n’) < (I'\ J,n) where
X¢ +n' = n -y where n does not contain this new factor of x.. The monomial x,
therefore divides y and we can reduce x, -n’ =n-yton’ = n-u’ where u’ = u/x.,
a contradiction to n’ € G(N). This completes the proof. O

With Theorem 3.6 established, we immediately have the following corollary.

Corollary 3.8. Every interval of Py which is of the form [0, (I, m)] is finite, dual
EL-shellable and therefore shellable.
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4 The topology of Py and properties of D(Py)

To establish the connection between the poset Py and the sequence D (Py ), we recall
the definition of CW poset, due to Bjorner [5].

Definition 4.1 ([5]). A poset P is called a CW poset if

(i) P has a least element 0,
(ii) P is nontrivial (has more than one element),

(iii) Forallx € P\ {6}, the open interval (6 x) is homeomorphic to a sphere.

After establishing this definition, Bjorner describes sufficient conditions for a poset
to be a CW poset.

Proposition 4.2 ([5, Proposition 2.2]). Suppose that P is a nontrivial poset such that

(1) P has a least element 6,

(ii) every interval [x, y] of length two has cardinality four,
(iii) For every x € P the interval [6, x| is finite and shellable.
Then P is a CW poset.

With this proposition in hand, we now may conclude the following about the struc-
ture of Py, the poset of admissible symbols.

Theorem 4.3. The poset of admissible symbols Py is a CW poset.

Proof. The poset Py has a least element by construction and each of its intervals
[0, (I, m)] is finite and shellable by Corollary 3.8. Thus, it remains to show that every
closed interval in Py of length two has cardinality four.

Case 1: Let (J,n) = 0 so that the set / is a singleton. It follows that the only poset
elements in the open interior of the interval are (&, m) and (&, g(xym)).

Case2: Let (J,n) # 0 and suppose that [(J, n), (I, m)] is a closed interval of length
two in the poset of admissible symbols, Py . Since the interval is of length two, the
set J has the form 7 \ {ig, i1} for some iy < iy € . Further, any poset element in the
interval must have either I \ {ip} or I/ \ {i;} as its first coordinate, for these sets are
the only subsets of / which contain 7 \ {ig,i1}.

Write m = m’x;,x;; where max(m’) < ip < i3. We must now consider each of
the possible orderings for the elements of the (multi) set {ig, i1, 12, i3} to ascertain the
choices available for the monomial n. Our assumptions of the inequalities i < i1 and
ip < i3 together with the admissibility of the symbol (1, m) imply thati; < max(/) <
max(m) < i3. Hence, determining the number of orderings amounts to producing a
count of the number of orderings for elements of the set {ig, i1, i}, of which there are
three, since iy < i7.
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Subcase 2.1: Suppose that ip < i1 < iz <i3.

If n = m, then the poset elements which are contained in the open interior of the
interval are forced to be (1 \ {io},m) and (I \ {i1}, m).

If n = g(x;j,m) and max(/ \ {ip}) < max(g(x;,m)) then the symbol (I \ {io},
g(x;,m)) is admissible, so that it is in the open interior of the interval along with
the admissible symbol (1 \ {i1},m). The symbol (I \ {io}, m) is not comparable to
(I \ {io}, g(x;,m)) due to the absence of the value ig. The symbol (I \ {i1}. g(x;, m))
is also not comparable to ({ \ {io}, g(x;,m)), for if it were then either g(x;,m) =
g(xgg(x;;m)) = g(x;ym) or g(x;yx;m) = n = g(x;,m). The first equality is
impossible since Lemma 3.7 guarantees that {io} is the unique set containing one
element for which n = g(x;,m). The second equality also can not occur since
Lemma 1.2 of [15] guarantees monomial equality g(x;,x;,m) = g(x;,m) if and only
if max(n) < min(x;,) = i1, which would contradict the assumption that (I \ {io}, n)
is an admissible symbol.

If n = g(x;,m) and max({ \ {ip}) > max(g(x;,m)) then the symbol (I \ {io},
g(xj,m)) is not admissible and is not an element of Py. However, we are assuming
that the symbol (1 \ {70, i1}, g(x;,m)) is admissible, so that i; is the element preventing
(I \ {io}, g(xi;m)) from being admissible and max(g(x;,m)) < i1. Lemma 1.2 of
[15] therefore guarantees the monomial equality g(x;,g(x;,m)) = g(x;;m) so that
(I'\ tio}. g(xigm)) = (I \ {io}.&(xixi,m)) and the symbols (I \ {i}.m) and (I \
{i1}, g(x;,m)) are each contained in the interval. Since n = g(x;,m), the symbol
(L \ {io}, m) is not comparable to (I \ {io}, g(x;,m)).

If n = g(x;;m) and max(/ \ {i1}) > max(g(x;,m)) then the symbol (1 \ {i1},
g(x;,m)) is not admissible and is not an element of Py . However, we are assuming the
admissibility of the symbol (1 \ {ig, i1}, g(x;,;m)) and it follows that the element ig is
preventing the admissibility of (1 \{i1}, g(x;,m)). We therefore have max(g(x;,m)) <
ip < i1 and via Lemma 1.2 of [15], the monomial equality g(x;,m)) = g(m) = m.
However, max(m) < iy < ij is a contradiction to the admissibility of the symbol
(I,m). Hence, (I \ {i1}, g(x;;m)) must be admissible and contained in the open in-
terior of the interval along with the admissible symbol (I \ {ig},m). The symbol
(I \ {i1}, m) is not comparable to ({ \ {i1}, g(x;,m)) due to the absence of the value
i1. The symbol (I \ {io}, g(x;,m)) is also not comparable to (I \ {i;}, g(x;,m)), for
if it were then either g(x;,m) = g(xzg(xi,m)) = g(xi,m) or g(Xj,x;;m) = n =
g(x;,m). The first equality is impossible since Lemma 3.7 guarantees that {i1} is
the unique set containing one element for which n = g(x;;m). The second equal-
ity also can not occur since Lemma 1.2 of [15] guarantees the monomial equality
g(x;jox;,m) = g(x;,m) if and only if max(n) < min(x;,) = ip, which would contra-
dict the assumption that (1 \ {i1},n) is an admissible symbol.

If n = g(xi,xim) # g(xi,m) then the symbols (I \ {io}, g(x;,m)) and (I \
{i1}, g(x;,m)) are admissible and are contained in the open interior of the interval.
Clearly, the symbols (1 \ {io},m) and (I \ {i1}, m) are not comparable to ({ \ {ip, i1},
g(x;j,x;,m)) in this instance.
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For each of these four choices of n, the interval [(J, n), (I, m)] has four elements.

Subcase 2.2: We now consider the two remaining orderings iy < i < i1 < i3 and
i <ip < i1 < i3. Under each of these orderings, we have degxl_3 (m) = 1 and in
light of Lemma 1.3 of [15] if n # m we have max(n) < max(m) = i3 and in turn that
max(n) <ij.

If n = m, then the poset elements which are contained in the open interior of the
interval are forced to be (I \ {io},m) and (I \ {i1}, m).

If n = g(x;,m) then max(n) < i; implies that the symbol (I \ {io}, g(xi,m))
is not admissible and is not an element of Py. However, we are assuming that
the symbol (I \ {io,i1},g(xi,m)) is admissible, so that max(g(x;,m)) < i1 and

again using Lemma 1.2 of [15], we have g(x;,g(x;;m)) = g(xj,m). Therefore,
(I \ {io}, g(xiym)) = (I \ {io}, g(xiyx;,m)) and the symbols (I \ {i1},m) and ({ \
{i1}, g(x;,m)) are each contained in the interval. Since n = g(x;,m), the symbol

(1 \ {io}, m) is not comparable to (I \ {io}, g(x;,m)).

If n = g(x;,m) then the symbol (I \ {ip}, m) is certainly contained in the closed
interval. Further, ({ \ {i1}, g(x;,m)) must be admissible for were it not, then the
assumption of admissibility for (/ \ {io, i1}, g(x;,m)) implies that

io = max(g(x;,m)) = min((g(xi,m))) = i1,

a contradiction to the initial stipulation that i9 < i;. The symbol (I \ {i1},m) is in-
comparable to (I \ {io, 71}, g(x;;m)) and were ({ \ {io}, g(x;,m)) comparable to (1 \
{io. i1}, 8(xi;m)), then either g(xi;m) = g(xa8(Xiym)) = 8(Xigm) or g(xiyXiym) =
n = g(x;,m). The first equality contradicts Lemma 3.7 and the second may be used
to arrive at a contradiction to the admissibility of (/ \ {i1}, g(x;;m)). These argu-
ments are similar to those used in the case when n = g(x;,m) and max({ \ {ip}) <
max(g(xim)).

Again, for each of these three choices of n, the interval has four elements. O

We now analyze the vector spaces which are present in the sequence O ( Py ) at the
level of individual poset elements. In order to do so, we recall the following combina-
torial results. As is standard, we write P = P \ {0, 1}.

Theorem 4.4 ([4, 8]). If a bounded poset P is EL-shellable, then the lexicographic
order of the maximal chains of P is a shelling of A(If). Moreover, the corresponding
order of the maximal chains of P is a shelling of A(P).

Theorem 4.5 ([8]). Suppose that P is a poset for which P=PuU {6 i} admits an
EL-labeling. Then P has the homotopy type of a wedge of spheres. Furthermore, for
any fixed EL-labeling:

(i) FI,‘ (A(P) Z) ~ Z#falling chains of length i +2

(ii) bases for i-dimensional homology (and cohomology) are induced by the falling
chains of length i + 2.
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In the analysis that follows, we again examine the dual poset Py and focus our
attention on the collection of closed intervals of the form [(/, m), 6], to each of which
we apply Theorem 4.5. Indeed, for each admissible symbol (/,m) € Py where |I| =
¢, the open interval ((/,m), 6) is homeomorphic to a sphere of dimension ¢ — 1 since
Py is a CW poset. Further, the EL-labeling of [(/, m), 0] guarantees that the unique
generator of H g—1(Ar,m, k) is induced by a unique falling chain of length ¢ + 1.
In the discussion that follows, we use the EL-shelling of Definition 3.4 to produce a
canonical generator of H g—1(A1,m, k) as alinear combination in which each facet of
A1 m occurs with coefficient 41 or —1.

To begin, consider a maximal chain (/,m) < o < 0 which is of length ¢ 4+ 1 and
appears in the dual closed interval [(, m), 0] and write the label of this chain as

(17.....17.0). 4.1)

We note that / = {[/7],...,

[71} and write

q

to = sgn(pg)- Sgn(]_[ lq) (4.2)

t=1

where p; € X is the permutation arranging the sequence
RN

in increasing order. We endow the corresponding chain o in ((1, m), 0) with this sign
&s and refer to it as the sign of 0.

The unique maximal chain 7 in [(/, m), 6] which has a decreasing label is the chain
consisting of admissible symbols having at each stage a different monomial as their
second coordinate and the sequence of sets

19] \ {lq}»] \ {lq—lqu}y L) ’{i17i2}9 {ll}v %]
as their first coordinate. The unique falling chain t € [(, m), 6] is therefore
(I,m) <(g,mq) <(Ig—1,4.Mg—1,9) <+ <(2,..q.M2,.,q) <(F,m1,. q) <0

where I = {i1,...,igy withiy < ... <igandforj =1,...,q,theset[; , =
I\ {ij,...,iq} and the monomial mj,__, = g(x;; -+~ x;,m). The label of the chain t
is therefore

(igs-...i1.0)

and is decreasing. If there were another such chain with decreasing label, then such a
chain would be counted by Theorem 4.5 and (0, (/, m)) would not have the homotopy
type of a sphere, a contradiction to the fact that Py is a CW poset. In the context of
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the shelling order produced by the EL-shelling above, the chain t appears lexicograph-
ically last among all maximal chains in the dual interval and is therefore the unique
homology facet of Ay .

Definition 4.6. For an admissible symbol (/, m), set

f(],m)z Z g * O,

06((I,m),6)

the linear combination of all maximal chains of the open interval ((/, m), @) with co-
efficients given by (4.2).

Viewing the maximal chains of (({, m), 6) as facets in the order complex Ay ,, we
now establish the following.

Lemma 4.7. The sum f(I,m) is a (q — 1)-dimensional cycle in ﬁq_l (A1,m, k) which
is not the boundary of any q-dimensional face.

Proof. The maximal chains in the open interval ((1,m), 6) are each of length ¢ — 1,
so that no g-dimensional faces are present in Ay ,. Thus, f(I,m) cannot be the
boundary of a g-dimensional face of Ay z,.

We now show that f(/,m) is a (g — 1)-dimensional cycle. Suppose that ¢ is a
maximal chain in ((1, m),0) and let (J, n) be an element of said chain. We exhibit a
unique chain o’ which also appears in f(I, m) and differs from o only at the element
(J,n).

Indeed, consider the chain (I, m) <o < 0 along with its subchain (J1,n1) < (J,n) <
(J2,n3). In the proof of Theorem 4.3, each closed interval of length two was shown to
be of cardinality four, and therefore there exists a unique (J/, n’) € [(J1,n1), (J2,n2)]
which is not equal to (J,n). Defining ¢’ by removing (J, n) and replacing it with
(J’,n"), we have constructed the desired chain.

We claim that for the chains o and o’, the associated signs &, and &4/ are opposite
to one another.

If (Jo,n2) = 0 then (J1,n1) = ({j},ny1) for some j. Thus, (J,n) = (&,n) and
(J',n") = (@, n’) so that the chains o and ¢’ have the same corresponding permutation
. Since either n; = n or n; = n’, without loss of generality we assume that n; = n
so that n’ = g(x;n). Therefore, the subchain ({j },n) <(@,n) < 0 has —J as its label,
while ({j},n) < (&,n") <0 has j as its label. This is the only difference in the labels
A(o) and A(0”) and g5 # & is forced.

If (Jo,n2) # 0 then for each case that appears in the classification of intervals of
length two described in the proof of Theorem 4.3, we can compute &5 # &4-.

When the differential d in the reduced chain complex C. (A1,m) is applied to the
sum f(I,m), each term appears twice with opposite signs, so that d(f(/,m)) = 0
making f(/,m) a (¢ — 1)-dimensional cycle in I?Iq_l(Al,m, k) as claimed. a
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5 Proof of Theorem 2.4

With the choice for the bases of the vector spaces in D ( Py ) established, we now turn
to the proof that the poset Py supports the minimal free resolution of R/N. We first
analyze the action of the differential of O (Py) when it is applied to an arbitrary basis
element f(1,m).

Lemma 5.1. The map wélff)’u’”) sends a basic cycle f(I,m) to (—1)Pt0mn. £(J n),
where I = {iy,...,iq4}, the relationship I \ J = {ip} holds and

0 otherwise.

S = {1 ifm#n

Proof. Write d for the simplicial differential in the reduced chain complex C. (Arm).
The open interval ((1,m), 6) may be realized as the union of half-closed intervals
[(J,n), 6), so that the order complex of each half-closed interval is a cone with apex
(J.n). Applying the differential to the sum of all facets contained in the interval pro-
duces the boundary of the cone, which in this case is the order complex of ((J, n), 0).
Indeed, when d is applied to the sum

v = E &g * O,

a€[(J,n),0)

the faces in which the element (J, n) remains appear twice and have opposite signs as
described in the proof of Lemma 4.7. Thus, the only faces that remain in the expansion
of d(v) are of the form 6 = ¢ \ {(J,n)}.

Precisely,

eI famy =[d( Y eao))] (5.1)

o€[(J,n),0)

== Z 80’ . 6-]
0€|:(J,n),f))

= Z 80-6].

Ge((J,n),0)

The facet 0 has an associated permutation p5 € ¥;—1, and using elementary prop-
erties of permutation signs, we have sgn(oy) = (—1)?*1.sgn(pg), where I\ J = {ip}.
Considering the definition of e, for each (J,n) for which (/,m) < (J,n) € Py we
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now have
q
g0 = sgn(po) - sgn(]_[ lq)
t=1

q
= (=1)"*" - sn(ps) - sen([ ] lg) - senln)

=2
= (—-D?*! . sgn(ly) - &5

— (_1)p+8m,n - &5

since sgn(/1) = lif n # m and sgn(l1) = —1if n = m.
Therefore, (5.1) becomes

Iy =Y k6]

Ge((J,n),0)

— |: Z (_1)p+8m,n &5 - 6—]
Ge((J,n),0)

— (_1)p+8m,11 . [ Z &5 - 5—]

5e((J,n),0)

= (=1)PTomn . £(J,n)

which proves the lemma. a

As described in Section 2, the map @411 is defined componentwise on the one-
dimensional k-vectorspace Oy 1 1,(7,,) for each poset element (1, m). Using the con-
clusion of Lemma 5.1, we immediately have

¢Q+l|£)q+1,(1,m) = §0q+1,(1,m)(f(ls m)) = Z (_1)p+8m,,1 SWU.,n) (5.2
(J,n)<(I,m)
where I = {i1,...,ig}andi; <---<igand J =1 \ {ip}.

Recall that the poset map 1 : Py —> N” is defined as (/,m) — mdeg(xym), so
that we can homogenize the sequence of vector spaces O (P ) to produce

ag(?’]) 3-177(71)
F):0— F; — Fy_1 —> -+ —> F; — Fy,
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a sequence of multigraded modules. More precisely, for ¢ > 0 and a poset element
(I,m) # O0where I = {i1,...,ig} andi; < --- < iy, the differential 9% (M acts on a
basis element f(I, m) of the free module Fy 4 via the formula

IV SUm) = 37 ()P ')
J,n)<(,m)
= Y DPxi, - fIm— > (=P (x A
(J,m)<(I,m) (J,n)<(I,m) glxi, M
(5.3)

where p takes the same value as in (5.2), so that 1 \ {i,} = J.
It remains to show that ¥ (n) is a minimal exact complex, and to do so we identify
it as the Eliahou—Kervaire resolution.

Definition 5.2. The Eliahou—Kervaire minimal free resolution [15] of a stable ideal N
is e 1
&: 0—>Ed—>Ed1—> —>E1—>E0

where Eg = R is the free module of rank one with basis 1 and for ¢ > 0, E41 has
as basis the admissible symbols

{e(],m) L ={i1,....ig}.max() < max(m)}.
When applied to a basis element, the differential of & takes the form

q
35,1 (e(I.m)) = Y (=1)Pxi, e (I \ {ip}.m)

p=1
— Z( 1)1?

where we define e( \ {ip}, g(xpm)) = 0 when max(/ \ {ip}) > max(g(x,m)) (i.e.
the symbol is inadmissible).

g( ) -e (I'\ {ip}. g(xi,m))

We now are in a position to prove the main result of this paper.

Proof of Theorem 2.4. The Eliahou—Kervaire symbols that are admissible index the
multigraded free modules in the complexes & and ¥ (1) and therefore the generators of
these modules are in one to one correspondence with one another. Further, comparing
Definition 5.2 and (5.3), 9€ and ¥ ™ have identical behavior on basis elements. The
minimality and exactness of & implies the minimality and exactness of F (1) so that
F (n) is a minimal poset resoution of R/N. O
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6 A Minimal Cellular Resolution of R/N

The technique which follows is an example of a general approach which interprets
cellular resolutions of monomial ideals through the theory of poset resolutions. This
approach is described in [10], and is distinct from both the method of [1] concerning
stable modules and the method of [19] which is specific to stable ideals. We begin by
recalling a fundamental result due to Bjorner.

Proposition 6.1 ([5, Proposition 3.1]). A poset P is a CW poset if and only if it is
isomorphic to the face poset of a regular CW complex.

In the case of the poset of admissible symbols Py, we interpret Bjorner’s proof ex-
plicitly to produce the corresponding regular CW complex X . On the level of cells,
0e Py corresponds to the empty cell and each admissible symbol (1, m) of Py cor-
responds to a closed cell X ,, of dimension |/| for which P(X},,) = [0, (1, m)].
Taking Xy = J X7 we have an isomorphism of posets P(Xy) =~ Py. The
regular CW complex Xy also comes equipped with a Z" grading by realizing the
map n : Py —> N” of Theorem 2.4 as a map n : Xy —> N’ where a cell
X1m = n(I,m) = mdeg(x;m).

Example 6.2. The stable ideal N = (a, b, c)? = (a?,ab,ac,b?, bc, c?) has minimal
resolution supported by Xy, the regular CW complex depicted below, which has six
O-cells, eight 1-cells and three 2-cells. The face poset of this cell complex P(Xpy) is
isomorphic to the poset of admissible symbols Py given in Example 3.5.

62

ac bc

2 2
a b b

We recall the following well-known definition to which we incorporate the infor-
mation given by the poset map 7. For a more comprehensive view of cellular and CW
resolutions, see [1, 3, 24].

Definition 6.3. A complex of multigraded R-modules, ¥y, is said to be a cellular
resolution of R/ N if there exists an N”-graded regular CW complex X such that:

(i) For all i > 0, the free module (¥ ); has as its basis the i — 1 dimensional cells
of X.
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(ii) For a basis element e € (¥ );, one has mdeg(e) = n(e),

(iii) The differential d of ¥ acts on a basis element e € (¥x); as

de) = > Cerer - XTEOTNED !

/

e'CeCX
dim(e)=dim(e’)+1

where ¢, ¢ is the coefficient of the cell e’ in the differential of e in the cellular
chain complex of X.

With this definition in hand, we are now able to reinterpret Theorem 2.4 in our final
result.

Theorem 6.4. Suppose that N is a stable monomial ideal. Then the minimal free
resolution ¥ (n) is a minimal cellular resolution of R/ N .

Proof. Conditions 1 and 2 of Definition 6.3 are clear from the structure of Xy, its
correspondence to the poset Py and the construction of the resolution ¥ (7). It there-
fore remains to verify that condition 3 is satisfied. The main result in [10] provides a
canonical isomorphism between the complex D (Py) and €(Xy), the cellular chain
complex of X . Therefore, the differential of ¥ (1) satisfies condition 3. D
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