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1 Introduction

Let S D kŒx1; : : : ; xn�, and let I � S be a monomial ideal. An important object in
the study of I is its minimal free resolution, which encodes essentially all information
about I . For example, the Betti numbers of I can be read off as the ranks of the
modules in its minimal resolution.

There are computationally intensive algorithms to compute the minimal resolution
of an arbitrary ideal (for example, in Macaulay 2 [5], the command res I returns the
minimal resolution of S=I ), but no general description is known, even for monomial
ideals. Thus, it is an ongoing problem of considerable interest to find classes of ideals
whose minimal resolutions can be described easily. A related problem is to describe
non-minimal resolutions which apply to large classes of monomial ideals.

The most general answer to the latter question is Taylor’s resolution, a (usually
highly non-minimal) resolution which resolves an arbitrary monomial ideal; it is dis-
cussed in Section 3.

A very successful approach to both problems in the last decade has been to find
combinatorial or topological objects whose structures encode resolutions in some way.
This approach began with simplicial resolutions [1], and has expanded to involve
polytopal complexes [8, 13], cellular complexes [2], CW complexes [3, 15], lattices
[7, 12, 11], posets [4], matroids [14], and discrete Morse theory [6].

Resolutions associated to combinatorial objects have distinguished bases, and re-
lationships between the objects lead to relationships between these bases. It thus be-
comes possible to compare and combine resolutions in all the ways that we can com-
pare or combine combinatorial structures. For example, most of these resolutions turn
out to be subcomplexes of the Taylor resolution in a very natural way. The only new
result in the paper is Theorem 7.1, which describes the intersection of all the simplicial
resolutions of an ideal.
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In Section 2, we describe some background material and introduce notation used
throughout the paper.

Section 3 introduces the Taylor resolution in a way intended to motivate simplicial
resolutions, which are introduced in Section 4.

Section 5 describes the Scarf complex, a simplicial complex which often supports
the minimal resolution of a monomial ideal, and otherwise does not support any reso-
lution.

Section 6 defines the family of Lyubeznik resolutions. This section is essentially a
special case of an excellent paper of Novik [9], which describes a more general class
of resolutions based on so-called “rooting maps”.

Section 7 uses the Lyubeznik resolutions to prove Theorem 7.1, that the Scarf com-
plex of an ideal is equal to the intersection of all its simplicial resolutions.

2 Background and Notation

Throughout the paper S D kŒx1; : : : ; xn� is a polynomial ring over an arbitrary field
k. In the examples, we use the variables a; b; c; : : : instead of x1; x2; x3; : : : .

We depart from the standard notation in two ways, each designed to privilege mono-
mials. First, we write the standard or “fine” multigrading multiplicatively, indexed by
monomials, rather than additively, indexed by n-tuples. Second, we index our sim-
plices by monomials rather than natural numbers. Details of both departures, as well
as some background on resolutions, are below.

2.1 Algebra

If I � S is an ideal, then a free resolution of S=I is an exact sequence

F W � � � �n�! Fn

�n�1���! Fn�1 ! � � � �0�! F0 ! S=I ! 0

where each of the Fi is a free S-module.
We say that F is minimal if each of the modules Fi has minimum possible rank; in

this case the ranks are the Betti numbers of S=I .
It is not at all obvious a priori that minimal resolutions should exist. For this reason,

when I is homogeneous, most standard treatments take the following theorem as the
definition instead:

Theorem 2.1. Let I be a homogeneous ideal, and let F be a resolution of S=I . Write
m D .x1; : : : ; xn/. Then F is minimal if and only if �i .FiC1/ � mFi for all i .

The proof of Theorem 2.1 is technical; see, for example, [10, Section 9].
All the ideals we consider are homogeneous; in fact, they are monomial ideals,

which is a considerably stronger property.
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Definition 2.2. An ideal I is a monomial ideal if it has a generating set consisting of
monomials. There exists a unique minimal such generating set; we write gens.I / and
call its elements the generators of I .

Monomial ideals respect a “multigrading” which refines the usual grading.

Notation 2.3. We write the multigrading multiplicatively. That is, for each monomial
m of S , set Sm equal to the k-vector space spanned by m. Then S D L

Sm, and
Sm � Sn D Smn, so this decomposition is a grading. We say that the monomial m has
multidegree m. We allow multidegrees to have negative exponents, so, for example,
the twisted module S.m�1/ is a free module with generator in multidegree m, and
S.m�1/n Š Sm�1n as a vector space; this is one-dimensional if no exponent of m�1n

is negative, and trivial otherwise. Note that S D S.1/.

If N and P are multigraded modules, we say that a map � W N ! P is homoge-
neous of degreem if �.Nn/ � Pmn for all n, and that � is simply homogeneous if it is
homogeneous of degree 1. We say that a resolution (or, more generally, an algebraic
chain complex) is homogeneous if all its maps are homogeneous.

The minimal resolution of S=I can be made homogeneous in a unique way by as-
signing appropriate multidegrees to the generators of its free modules; counting these
generators by multidegree yields the multigraded Betti numbers of S=I .

2.2 Combinatorics

LetM be a set of monomials (typically, M will be the generators of I ). The simplex
on M is the set of all subsets ofM ; we denote this by 
M . We will sometimes refer
to the elements ofM as vertices of 
M .

A simplicial complex on M is a subset of 
M which is closed under the taking of
subsets. If � is a simplicial complex onM and F 2 � , we say that F is a face of � .
Observe that if F is a face of � and G � F , then G is also a face of � . We require
that simplicial complexes be nonempty; that is, the empty set must always be a face.
(In fact, for our purposes, we may as well assume that every vertex must be a face.)

If F is a face of � , we assign F the multidegree lcm.m W m 2 F /. Note that
the vertex m has multidegree m, and that the empty set has multidegree 1. The order
of a face F , written jF j, is the number of vertices in F ; this is one larger than its
dimension. If G � F and jGj D jF j � 1, we say that G is a facet of F .

We adopt the convention that the unmodified word “complex” will always mean
an algebraic chain complex; simplicial complexes will be referred to with the phrase
“simplicial complex”. However, recall that every simplicial complex is naturally as-
sociated to a chain complex by the following standard construction from algebraic
topology:
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Construction 2.4. Let � be a simplicial complex on M , and impose an order on the
monomials of M by writing M D ¹m1; : : : ; mrº. Then we associate to � the chain
complex C� as follows:

For every face F 2 � , we create a formal symbol ŒF �. Write F D ¹mi1
; : : : ; mis

º
with increasing indices ij ; then for each facet G of F we may write G D F X ¹mij º
for some j . We define an orientation by setting "F

G equal to 1 if j is odd and to �1 if
j is even. For each s, let Cs be the k-vector space spanned by the symbols ŒF � such
that jF j D s, and define the map

�s�1 W Cs ! Cs�1

ŒF � 7!
X

G is a facet of F

"F
G ŒG�:

Then we set C� equal to the complex of vector spaces

C� W 0! Cr

�r�1���! � � � �1�! C1

�0�! C0 ! 0:

The proof that C� is a chain complex involves a straightforward computation of
�2.Œmi1

; : : : ; mis
�/. The (reduced) homology of � is defined to be the homology of

this complex.
In Section 4, we will replace this complex with a homogeneous complex of free

S -modules.

3 The Taylor Resolution

Let I D .m1; : : : ; ms/ be a monomial ideal. The Taylor resolution of I is constructed
as follows:

Construction 3.1. For a subset F of ¹m1; : : : ; mrº, set lcm.F / D lcm¹mi W mi 2
F º. For each such F , we define a formal symbol ŒF �, called a Taylor symbol, with
multidegree equal to lcm.F /. For each i , set Ti equal to the free S-module with basis
¹ŒF � W jF j D iº given by the symbols corresponding to subsets of size i . Note that
T0 D SŒ¿� is a free module of rank one, and that all other Ti are multigraded modules
with generators in multiple multidegrees depending on the symbols ŒF �.

Define ��1 W T0 ! S=I by ��1.f Œ¿�/ D f . Otherwise, we construct �i W
TiC1 ! Ti as follows.

Given F D ¹mj1
; : : : ; mji

º, written with the indices in increasing order, and G D
F X ¹mjk

º, we set the sign "F
G equal to 1 if k is odd and to �1 if k is even. Finally, we

set

�F D
X

GDF X¹mi º; some i

"F
G

lcm.F /

lcm.G/
ŒG�;
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and define �i W TiC1 ! Ti by extending the various �F . Observe that all of the �i are
homogeneous with multidegree 1.

The Taylor resolution of I is the complex

TI W 0! Tr

�r�1���! � � � �1�! T1

�0�! T0 ! S=I ! 0:

It is straightforward to show that the Taylor resolution is a homogeneous chain com-
plex.

The construction of the Taylor resolution is very similar to Construction 2.4; in fact,
if � is the complete simplex, the only difference is the presence of the lcms in the
boundary maps. We will explore this connection in the next section.

Example 3.2. Let I D .a; b2; c3/. Then the Taylor resolution of I is

TI W 0! SŒa; b2; c3�

	

a
�b2

c3




�����!

SŒb2; c3�

˚
SŒa; c3�

˚
SŒa; b2�

	

0 �c3 �b2

�c3 0 a
b2 a 0




�����������!

SŒa�

˚
SŒb2�

˚
SŒc3�

. a b2 c3 /������! SŒ¿�! S=I ! 0:

Observe that I is a complete intersection and TI is its Koszul complex. In fact,
these two complexes coincide for all monomial complete intersections.

Example 3.3. Let I D .a2; ab; b3/. Then the Taylor resolution of I is

TI W 0! SŒa2; ab; b3�

	

a�1
b2




����!

SŒab; b3�

˚
SŒa2; b3�

˚
SŒa2; ab�

	

0 �b3 �b
�b2 0 a
a2 a 0




����������!

SŒa2�

˚
SŒab�

˚
SŒb3�

. a2 ab b3 /�������! SŒ¿�! S=I ! 0:

This is not a minimal resolution; the Taylor resolution is very rarely minimal.

Theorem 3.4. The Taylor resolution of I is a resolution of I .

It is not too difficult to show that �2 D 0 in the Taylor complex, but it is not at all
clear from the construction that the complex is exact. This seems to be most easily
established indirectly by showing that the Taylor resolution is a special case of some
more general phenomenon. We will prove Theorem 3.4 in the next section, using the
language of simplicial resolutions. Traditionally, one builds the Taylor resolution as
an iterated mapping cone; we sketch that argument below.
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Sketch of Theorem 3.4. Write I D .m1; : : : ; mr/, and let J D .m1; : : : ; mr�1/. Con-
sider the short exact sequence

0! S

.J W mr/

mr��! S

J
! S

I
! 0:

If .A; ˛/ and .B; ˇ/ are free resolutions of S=.J W mr/ and S=J , respectively, then
multiplication bymr induces a map of complexes .mr /� W A! B. The mapping cone
complex .T ; �/ is defined by setting Ti D Bi˚Ai�1 and � jB D ˇ, � jA D .mr /��˛;
it is a free resolution of S=I (see, for example, [10, Section 27]).

Inducting on r , S=.J W mr/ is resolved by the Taylor resolution on its (possibly
redundant) generating set ¹ lcm.m1;mr /

mr
; : : : ; lcm.mr�1;mr /

mr
º, and S=J is resolved by the

Taylor resolution on its generators ¹m1; : : : ; mr�1º. The resulting mapping cone is the
Taylor resolution of I .

4 Simplicial Resolutions

If � D 
, the construction of the Taylor resolution differs from the classical topo-
logical construction of the chain complex associated to � only by the presence of the
monomials lcm.F /

lcm.G/
in its differential maps. This observation leads naturally to the ques-

tion of what other simplicial complexes give rise to resolutions in the same way. The
resulting resolutions are called simplicial. Simplicial resolutions and, more generally,
resolutions arising from other topological structures (it seems that the main results
can be tweaked to work for anything defined in terms of skeletons and boundaries)
have proved to be an instrumental tool in the understanding of monomial ideals. We
describe only the foundations of the theory here; for a more detailed treatment, the
original paper of Bayer, Peeva, and Sturmfels [1] is a very readable introduction.

Construction 4.1. Let M be a set of monomials, and let � be a simplicial complex
on M (recall that this means that the vertices of � are the monomials in M ). Fix an
ordering on the elements of M ; this induces an orientation " on � . Recall that "F

G is
either 1 or �1 if G is a facet of F (see Construction 2.4 for the details); it is often
convenient to formally set "F

G equal to zero when G is not a facet of F .
We assign a multidegree to each face F 2 � by the rule mdeg.F / D lcm.m W m 2

F / (recall that F is a subset ofM , so its elements are monomials).
Now for each face F we create a formal symbol ŒF � with multidegree mdeg.F /.

LetHs be the free module with basis ¹ŒF � W jF j D sº, and define the differential

�s�1 W Hs ! Hs�1

ŒF � 7!
X

G is a facet of F

"F
G

mdeg.F /

mdeg.G/
ŒG�:
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The complex associated to � is then the algebraic chain complex

H� W 0! Hr

�r�1���! � � � �1�! H1

�0�! H0 ! S=I ! 0:

Construction 4.1 differs from Construction 2.4 in that it is a complex of free S -
modules rather than vector spaces. The boundary maps are identical except for the
monomial coefficients, which are necessary to make the complex homogeneous.

Example 4.2. Let I be generated by M , and let 
 be the simplex with vertices M .
Then the Taylor resolution of I is the complex associated to 
.

Example 4.3. Let I be generated byM D ¹a2; ab; b3º, and let 
 be the full simplex
on M , � the simplicial complex with facets ¹a2; abº and ¹ab; b3º, and ‚ the zero-
skeleton of 
. These simplicial complexes, with their faces labeled by multidegree,
are pictured in Figure 1.

a2 a2 a2b3 b3 b3
a2b3

a2b3

a
2 b

a
2 b

ab 3

ab 3

ab ab ab

Δ Γ Θ
Figure 1. The simplicial complexes 
, � , and ‚ of Example 4.3.

The algebraic complex associated to
 is the Taylor resolution of Example 3.3. The
other two associated complexes are

H� W 0!
SŒa2; ab�

˚
SŒab; b3�

	

�b 0
a �b2

0 a




�������!

SŒa2�

˚
SŒab�

˚
SŒb3�

. a2 ab b3 /��������! SŒ¿�! S=I ! 0

and

H‚ W 0! SŒa2�˚ SŒab�˚ SŒb3�
. a2 ab b3 /��������! SŒ¿�! S=I ! 0:

H� is a resolution (in fact, the minimal resolution) of S=I , and H‚ is not a resolu-
tion of I .

The algebraic complex associated to � is not always exact; that is, it does not always
give rise to a resolution of I . When this complex is exact, we call it a simplicial
resolution, or the (simplicial) resolution supported on � . It turns out that there is a
topological condition describing whether � supports a resolution.
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Definition 4.4. Let � be a simplicial complex onM , and let	 be a multidegree. We set
��� equal to the simplicial subcomplex of � consisting of the faces with multidegree
divisible by 	,

��� D ¹F 2 � W deg.F / divides 	º:
Observe that ��� is precisely the faces of � whose vertices all divide 	.

Theorem 4.5 (Bayer–Peeva–Sturmfels). Let � be a simplicial complex supported on
M , and set I D .M/. Then � supports a resolution of S=I if and only if, for all 	,
the simplicial complex ��� has no homology over k.

Proof. Since H� is homogeneous, it is exact if and only if it is exact (as a complex of
vector spaces) in every multidegree. Thus, it suffices to examine the restriction of H�

to each multidegree 	.
Observe that .SŒF �/� Š S. 1

mdeg.F /
/� Š S �

mdeg.F /
is a one-dimensional vector space

with basis �
mdeg.F /

if mdeg.F / divides 	, and is zero otherwise. Furthermore, since
the differential maps � are homogeneous, the monomials appearing in their definition
are precisely those which map these basis elements to one another. Thus .H�/� is,
with minor abuse of notation, precisely the complex of vector spaces which arises
when computing (via Construction 2.4) the homology of the simplicial complex ¹F 2
� W mdeg.F / divides 	º, and this complex is ���.

We conclude that � supports a resolution of I if and only if .H�/� is exact for
every 	, if and only if .H�/� has no homology for every 	, if and only if ��� has no
homology for every 	.

Example 4.6. The simplicial complexes ��� depend on the underlying monomialsM ,
so it is possible for a simplicial complex to support a resolution of some monomial
ideals but not others. For example, the simplicial complex � in Example 4.3 supports
a resolution of I D .a2; ab; b3/ because no monomial is divisible by a2 and b3 with-
out also being divisible by ab. However, if we were to relabel the vertices with the
monomials a, b, and c, the resulting simplicial complex � 0 would not support a reso-
lution of .a; b; c/ because � 0�ac would consist of two points; this simplicial complex
has nontrivial zeroeth homology.

Remark 4.7. Note that the homology of a simplicial complex can depend on the choice
of field, so some simplicial complexes support resolutions over some fields but not
others. For example, if � is a triangulation of a torus, it may support a resolution if the
field has characteristic zero, but will not support a resolution in characteristic two. In
particular, resolutions of monomial ideals can be characteristic-dependent.

Theorem 4.5 allows us to give a short proof that the Taylor resolution is in fact a
resolution.
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Proof of Theorem 3.4. Let 	 be given. Then 
�� is the simplex with vertices ¹m 2
M W m divides 	º, which is either empty or contractible.

5 The Scarf Complex

Unfortunately, the Taylor resolution is usually not minimal. The nonminimality is
visible in the nonzero scalars in the differential maps, which occur whenever there
exist faces F and G with the same multidegree such that G is in the boundary of F . It
is tempting to try to simply remove the nonminimality by removing all such faces; the
result is the Scarf complex.

Construction 5.1. Let I be a monomial ideal with generating set M . Let 
I be the
full simplex on M , and let †I be the simplicial subcomplex of 
I consisting of the
faces with unique multidegree,

†I D ¹F 2 
I W mdeg.G/ D mdeg.F / H) G D F º:
We say that †I is the Scarf simplicial complex of I ; the associated algebraic chain
complex SI is called the Scarf complex of I . The multidegrees of the faces of †I are
called the Scarf multidegrees of I .

Remark 5.2. It is not obvious that †I is a simplicial complex. Let F 2 †I ; we will
show that every subset of F is also in †I . Suppose not; then there exists a minimal
G � F which shares a multidegree with some otherH 2 
I . LetE be the symmetric
difference of G and H . Then the symmetric difference of E and F has the same
multidegree as F .

Example 5.3. Let I D .a2; ab; b3/. Then the Scarf simplicial complex of I is the
complex � in Figure 1. The Scarf complex of I is the minimal resolution

SI W 0!
SŒa2; ab�

˚
SŒab; b3�

 �b 0
a �b2

0 a

!

��������!

SŒa2�

˚
SŒab�

˚
SŒb3�

. a2 ab b3 /��������! SŒ¿�! S=I ! 0:

Example 5.4. Let I D .ab; ac; bc/. The Scarf simplicial complex of I consists of
three disjoint vertices. The Scarf complex of I is the complex

SI W 0!

SŒab�

˚
SŒac�

˚
SŒbc�

. ab ac bc /��������! SŒ¿�! S=I ! 0:

It is not a resolution.
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Example 5.4 shows that not every monomial ideal is resolved by its Scarf complex.
We say that a monomial ideal is Scarf if its Scarf complex is a resolution.

Theorem 5.5. If the Scarf complex of I is a resolution, then it is minimal.

Proof. By construction, no nonzero scalars can occur in the differential matrices.

Bayer, Peeva and Sturmfels [1] call an ideal generic if no variable appears with the
same nonzero exponent in more than one generator. They show that these “generic”
ideals are Scarf.

Unfortunately, most interesting monomial ideals are not Scarf. However, Scarf com-
plexes have proved an important tool in constructing ideals whose resolutions misbe-
have in various ways [15].

Theorem 5.6. Let F be a minimal resolution of I . Then the Scarf complex of I is a
subcomplex of F .

Proof. This is [10, Proposition 59.2]. The proof requires a couple of standard facts
about resolutions, but is otherwise sufficiently reliant on the underlying simplicial
complexes that we reproduce it anyway.

We know (see, for example, [10, Section 9]) that there is a homogeneous inclusion
of complexes from F to the Taylor complex T . We also know that the multigraded
Betti numbers of I , which count the generators of F , can be computed from the ho-
mology of the simplicial complexes
ˆm [10, Section 57]. Ifm D mdeg.G/ is a Scarf
multidegree, then bjGj;m.S=I / D 1 and bi;m.S=I / D 0 for all other i . If m divides
a Scarf multidegree but is not itself a Scarf multidegree, then bi;m.S=I / D 0 for all
i . In particular, when m is a Scarf multidegree, the Betti numbers of multidegree m
also count the number of faces of multidegree m in both 
I and †I ; these numbers
are never greater than one.

By induction on multidegrees, each generator of F with a Scarf multidegree must
(up to a scalar) be mapped under the inclusion to the unique generator of the Taylor
resolution with the same multidegree. However, these are exactly the generators of the
Scarf complex. Thus, the inclusion from F to T induces an inclusion from S to F .

6 The Lyubeznik Resolutions

If the Taylor resolution is too large, and the Scarf complex is too small, we might still
hope to construct simplicial resolutions somewhere in between. Velasco [15] shows
that it is impossible to get the minimal resolution of every ideal in this way, even if we
replace simplicial complexes with much more general topological objects. However,
there are still classes of simplicial resolutions which are in general much smaller than
the Taylor resolution, yet still manage to always be resolutions. One such class is the
class of Lyubeznik resolutions, introduced below.
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Our construction follows the treatment in an excellent paper of Novik [9], which
presents the Lyubeznik resolutions as special cases of resolutions arising from “root-
ing maps”. The only difference between the following construction and Novik’s paper
is that the extra generality has been removed, and the notation is correspondingly sim-
plified.

Construction 6.1. Let I be a monomial ideal with generating setM , and fix an order-
ing � on the monomials appearing inM . (We do not require that � have any special
property, such as a term order; any total ordering will do.) WriteM D ¹m1; : : : ; msº
with mi � mj whenever i < j .

Let 
I be the full simplex onM ; for a monomial 	 2 I , set min.	/ D min�¹mi W
mi divides 	º. For a face F 2 
I , set min.F / D min.mdeg.F //. Thus min.F / is
a monomial. We expect that in fact min.F / is a vertex of F , but this need not be the
case: for example, if F D ¹a2; b2º, we could have min.F / D ab.

We say that a face F is rooted if every nonempty subfaceG � F satisfies min.G/ 2
G. (Note that in particular min.F / 2 F .) By construction, the set ƒI;� D ¹F 2 
I W
F is rootedº is a simplicial complex; we call it the Lyubeznik simplicial complex asso-
ciated to I and �. The associated algebraic chain complex LI;� is called a Lyubeznik
resolution of I .

Example 6.2. Let I D .ab; ac; bc/. Then there are three distinct Lyubeznik resolu-
tions of I , corresponding to the simplicial complexes pictured in Figure 2: ƒab arises

ab

ac

Λ ac

ab

bcac

Λab

ab

bcac

Λ bc

bc

Figure 2. The Lyubeznik resolutions of I D .ab; ac; bc/.

from the orders ab � ac � bc and ab � bc � ac,ƒac arises from the orders with ac
first, andƒbc arises from the orders with bc first. Each of these resolutions is minimal.

Example 6.3. Let I D .a2; ab; b3/. There are two Lyubeznik resolutions of I : the
Scarf complex, arising from the two orders with ab first, and the Taylor resolution,
arising from the other four orders. The corresponding simplicial complexes are pic-
tured in Figure 3.

Remark 6.4. It is unclear how to choose a total ordering on the generators of I which
produces a smaller Lyubeznik resolution. Example 6.3 suggests that the obvious
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a2 a2b3 b3
a2b3

a2b3

a
2 b

a
2 b

ab 3

ab 3

ab ab

Λ Λ1 2

Figure 3. The Lyubeznik resolutions of I D .a2; ab; b3/.

choice of a term order is a bad one: the lex and graded (reverse) lex orderings all
yield the Taylor resolution, while the minimal resolution arises from orderings which
cannot be term orders.

We still need to show that, unlike the Scarf complex, the Lyubeznik resolution is
actually a resolution.

Theorem 6.5. The Lyubeznik resolutions of I are resolutions.

Proof. Let M D ¹m1; : : : ; msº be the generators of I and fix an order � on M .
For each multidegree 	, we need to show that the simplicial subcomplex .ƒI;�/��,
consisting of the rooted faces with multidegree dividing 	, has no homology.

If 	 62 I , this is the empty complex. If 	 2 I , we claim that .ƒI;�/�� is a cone.
Suppose without loss of generality that m1 D min.	/. We claim that, if F is a

face of .ƒI;�/��, then F [ ¹m1º is a face as well. First, note that mdeg.F [ ¹m1º/
divides 	 because bothm1 and mdeg.F / do. Thus it suffices to show that F [¹m1º is
rooted. Observe that min.F [ ¹m1º/ D m1 because mdeg.F [ ¹m1º/ divides 	 and
m1 divides mdeg.F [ ¹m1º/. If G � F , then min.G/ 2 G because F is rooted, and
min.G [ ¹m1º/ D m1. Thus F [ ¹m1º is rooted.

Hence .ƒI;�/�� is a simplicial cone on m1 and is contractible.

7 Intersections

The only new result of this paper is that the Scarf complex of an ideal I is the inter-
section of all its minimal resolutions. To make this statement precise, we need to refer
to some ambient space that contains all the minimal resolutions; the natural choice is
the Taylor resolution.

Theorem 7.1. Let I be a monomial ideal. Let DI be the intersection of all isomorphic
embeddings of the minimal resolution of I in its Taylor resolution. Then DI D SI is
the Scarf complex of I .
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Proof. We showed in Theorem 5.6 that the Scarf complex is contained in this intersec-
tion. It suffices to show that the intersection of all minimal resolutions lies inside the
Scarf complex. We will show that in fact the intersection of all the Lyubeznik resolu-
tions is the Scarf complex. The result will follow because each Lyubeznik resolution
contains a copy of its minimal resolution; if the Scarf complex contains the inter-
section of these embeddings of the minimal resolution, it must contain the (smaller)
intersection of all embeddings.

Suppose that F is a face of every Lyubeznik simplicial complex. This means that,
regardless of the ordering of the monomial generators of I , the first generator dividing
mdeg.F / appears in F . Equivalently, every generator which divides mdeg.F / appears
as a vertex of F . Thus, F is the complete simplex on the vertices with multidegree
dividing mdeg.F /.

Now suppose that there exists another face G with the same multidegree as F .
Every vertex of G divides mdeg.G/ D mdeg.F /, so in particular G � F . But this
means that G is also a face of every Lyubeznik simplicial complex, so every generator
dividing mdeg.G/ is a vertex of G by the above argument. In particular, F D G.
This proves that F is the unique face with multidegree mdeg.F /, i.e., F is in the Scarf
complex.

8 Questions

The viewpoint that allows us to discuss Theorem 7.1 as we have, without reference to
the gigantic index set in its statement, requires that we consider a resolution together
with its basis, so resolutions which are isomorphic as algebraic chain complexes can
still be viewed as different objects. The common use of the phrase “the minimal res-
olution” (instead of “a minimal resolution”) suggests that this this point of view is
relatively new, or at any rate has not been deemed significant. In any event, there are
some natural questions which would not make sense from a more traditional point of
view.

Question 8.1. Let I be a monomial ideal. Are there (interesting) resolutions of I
which are not subcomplexes of the Taylor resolution?

It is simple enough to construct uninteresting resolutions which are not subcom-
plexes of T ; for example, one may take the direct sum of T with a trivial complex
0 ! S ! S ! 0. (This is only uninteresting when the basis is distinguished, as
all non-minimal resolutions are isomorphic to a direct sum of a minimal resolution
with trivial complexes. Actually finding the bases for these summands seems to be an
intractable problem.) However, all the interesting resolutions I understand are subcom-
plexes of the Taylor complex in a natural way: their basis elements can be expressed
with relative ease as linear combinations of Taylor symbols. Consider for example the
edge ideal of a four-cycle, I D .ab; bc; cd; ad/. Its minimal resolution occurs inside
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the Taylor resolution as the subcomplex

0!
*

Œab; bc; cd �

CŒab; cd; ad �

+

!
*

Œab; bc�; Œbc; cd �;

Œcd; ad �; Œab; ad �

+

!
*

Œab�; Œbc�;

Œcd �; Œad �

+

! SŒ¿�! 0:

The generators and first syzygies have bases of pure Taylor symbols, and the second
syzygies involve a sparse mixed term. In general, if a resolution is constructed in
terms of a topological or combinatorial object, one can find a basis inside the Taylor
resolution by triangulating that object.

If we restrict our attention to simplicial resolutions, we can restate Question 8.1
slightly. Supposing that a resolution is a subcomplex of the Taylor resolution, it is
simplicial if and only if all its basis elements are Taylor symbols. For a simplicial
resolution to fail to be a subcomplex of the Taylor complex, the set of vertices of its
underlying simplicial complex must not be a subset of the generators – in other words,
the underlying presentation must not be minimal. Generalizing back to arbitrary reso-
lutions, we may ask the following question.

Question 8.2. Let I be a monomial ideal. Are there (interesting) resolutions of I with
repeated or non-minimal generators?

My suspicion is that such resolutions may exist, at least for special classes of ideals,
and may be useful in the study of homological invariants such as regularity which are
interested in the degree, rather than the number, of generators.

Acknowledgments. I thank Ananth Hariharan, Manoj Kummini, Steve Sinnott, and
the algebra groups at Cornell and Kansas for inspiration and helpful discussions.

Bibliography

[1] Bayer, D., Peeva, I., Sturmfels, B., Monomial resolutions. Math Res Lett. 1998;5(1-2):
31–46. MR 1618363 (99c:13029)

[2] Bayer, D., Sturmfels, B., Cellular resolutions of monomial modules. J Reine Angew
Math. 1998;502:123–140. MR 1647559 (99g:13018)

[3] Batzies, E., Welker, V., Discrete Morse theory for cellular resolutions. J Reine Angew
Math. 2002;543:147–168. MR 1887881 (2003b:13017)

[4] Clark, T. B. P., Poset resolutions and lattice-linear monomial ideals. J Algebra. 2010;
323(4):899–919. MR 2578585 (2011b:13037)

[5] Grayson, D. R., Stillman, M. E., Macaulay 2, a software system for research in algebraic
geometry. Available from: http://www.math.uiuc.edu/Macaulay2/.

[6] Jöllenbeck, M., Welker, V., Minimal resolutions via algebraic discrete Morse theory.
Mem Amer Math Soc. 2009;197(923):vi+74. MR 2488864 (2009m:13017)



Three Simplicial Resolutions 141

[7] Mapes, S., Finite atomic lattices and resolutions of monomial ideals. Preprint. arXiv:
1009.1430. 2010.

[8] Nagel, U., Reiner, V., Betti numbers of monomial ideals and shifted skew shapes. Elec-
tron J Combin. 2009;16(2, Special volume in honor of Anders Björner):Research Paper
3, 59. MR 2515766 (2010h:13022)

[9] Novik, I., Lyubeznik’s resolution and rooted complexes. J Algebraic Combin. 2002;
16(1):97–101. MR 1941987 (2003j:13021)

[10] Peeva, I., Graded syzygies. vol. 14 of Algebra and applications. London: Springer; 2010.

[11] Peeva, I., Velasco, M., Frames and degenerations of monomial resolutions. Trans Amer
Math Soc. 2011;363(4):2029–2046. MR 2746674

[12] Phan, J., Minimal monomial ideals and linear resolutions. Preprint. arXiv:math/
0511032v2. 2005.

[13] Sinefakopoulos, A., On Borel fixed ideals generated in one degree. J Algebra. 2008;
319(7):2739–2760. MR 2397405 (2008m:13020)

[14] Tchernev, A. B., Representations of matroids and free resolutions for multigraded mod-
ules. Adv Math. 2007;208(1):75–134. MR 2304312 (2008i:13020)

[15] Velasco, M., Minimal free resolutions that are not supported by a CW-complex. J Alge-
bra. 2008;319(1):102–114. MR 2378063 (2008j:13028)

Author Information

Jeff Mermin, Department of Mathematics, Oklahoma State University, Stillwater, OK, USA.
E-mail: mermin@math.okstate.edu




