Near-infrared spectroscopy and chemometrics for rapid profiling of plant secondary metabolites
-
Ntebogeng S. Mokgalaka
Abstract
In this study, near-infrared (NIR) spectroscopy, in combination with chemometrics, was used as a rapid tool for determining if exposure to contamination from mine tailings influences the matrices of the specimens, compared to those from natural populations. Principal component analysis (PCA) plots were made from the chemometric models obtained to establish if season of harvest, geographical origin, and level of soil contamination play a determining role in the chemical profiles of the individual specimens harvested from mine sites or natural populations. The random distribution on PCA score plots corroborated the intraspecies variation of Lippia scaberrima previously observed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS) essential oil profiles. Clustering according to the season and origin of the individual plants confirmed that the geographic location and the season of harvest influence the chemical profiles of L. scaberrima. The NIR data could not be correlated with the level of soil contamination to which the specimens were exposed. The PCA scores and loadings plots obtained from NIR data of Searsia pendulina suggest that the species is tolerant to pollution from mine tailings. Although separation was obtained in a three-component PCA model between specimens sampled during different seasons, some clustering was observed by specimens from the same geographical origin.
R. A. Shaw, H. H. Mantsch. J. Mol. Struct.480–481, 1 (1999). (http://dx.doi.org/10.1016/S0022-2860(98)00648-6)Suche in Google Scholar
H. Schulz, M. Baranska. Vib. Spectrosc.43, 13 (2007). (http://dx.doi.org/10.1016/j.vibspec.2006.06.001)Suche in Google Scholar
D. Cozzolino. Planta Med.75, 746 (2009). (http://dx.doi.org/10.1055/s-0028-1112220)Suche in Google Scholar PubMed
H. P. R. Aenugu, D. S. Kumar, Srisudharson, N. Parthiban, S. S. Ghosh, D. Banji. Int. J. Chem. Tech. Res.3, 825 (2011).Suche in Google Scholar
J. Moros, S. Garrigues, M. de la Guardia. Trends Anal. Chem.29, 578 (2010). (http://dx.doi.org/10.1016/j.trac.2009.12.012)Suche in Google Scholar
X. Lu, B. A. Rasco. Crit. Rev. Food Sci.52, 853 (2012). (http://dx.doi.org/10.1080/10408398.2010.511322)Suche in Google Scholar PubMed
C. M. McGoverin, P. Engelbrecht, P. Geladi, M. Manley. Anal. Bioanal. Chem.401, 2283 (2011). (http://dx.doi.org/10.1007/s00216-011-5291-x)Suche in Google Scholar PubMed
F. Liu, Z. L. Jin, M. S. Naeem, T. Tian, F. Zhang, Y. He, H. Fang, Q. F. Ye, W. J. Zhou. Food Process Technol.4, 1314 (2011).Suche in Google Scholar
M. Blanco, R. Cueva-Mestanza, A. Peguero. Talanta85, 2218 (2011). (http://dx.doi.org/10.1016/j.talanta.2011.07.082)Suche in Google Scholar PubMed
K. Kwok, L. S. Taylor. J. Pharm. Biomed. Anal.66, 126 (2012). (http://dx.doi.org/10.1016/j.jpba.2012.03.026)Suche in Google Scholar PubMed
M. Blanco, I. Villarroya. Trends Anal. Chem.21, 240 (2002). (http://dx.doi.org/10.1016/S0165-9936(02)00404-1)Suche in Google Scholar
R. Liu, R. L. Frost, W. N. Martens. Mater. Chem. Phys.113, 707 (2009). (http://dx.doi.org/10.1016/j.matchemphys.2008.08.019)Suche in Google Scholar
P. Roychoudhury, L. M. Harvey, B. McNeil. Anal. Chim. Acta571, 159 (2006). (http://dx.doi.org/10.1016/j.aca.2006.04.086)Suche in Google Scholar PubMed
I. Vermaak, A. M. Viljoen, J. H. Hamman, M. Baranska. Phytochem. Lett.3, 256 (2010). (http://dx.doi.org/10.1016/j.phytol.2010.06.003)Suche in Google Scholar
D. Jang, W. Deguang, H. Linfang, C. Shilin, Q. Minjian. J. Med. Plants Res.5, 4001 (2011).Suche in Google Scholar
H.-Y. Lu, S.-S. Wang, R. Cai, Y. Meng, X. Xie, W.-J. Zhao. J. Pharm. Biomed. Anal.59, 44 (2012). (http://dx.doi.org/10.1016/j.jpba.2011.09.037)Suche in Google Scholar PubMed
M. Baranska, H. Schulz, A. Walter, P. Rösch, R. Quilitzsch, G. Lösing, J. Popp. Vib. Spectrosc.42, 341 (2006). (http://dx.doi.org/10.1016/j.vibspec.2006.08.004)Suche in Google Scholar
M. Sandasi, G. P. P. Kamatou, M. Baranska, A. M. Viljoen. S. Afr. J. Bot.76, 692 (2010). (http://dx.doi.org/10.1016/j.sajb.2010.07.013)Suche in Google Scholar
B. B. Ivanova, M. Spiteller. Talanta94, 9 (2012). (http://dx.doi.org/10.1016/j.talanta.2011.12.016)Suche in Google Scholar PubMed
S. Ji-Yong, Z. Xiao-Bo, Z. Jie-Wen, M. Holmes, W. Kai-Liang, W. Xue, C. Hong. Spectrochim. Acta A94, 271 (2012).Suche in Google Scholar
J. Luypaert, M. H. Zhang, D. L. Massart. Anal. Chim. Acta78, 303 (2003). (http://dx.doi.org/10.1016/S0003-2670(02)01509-X)Suche in Google Scholar
Q. Chen, Z. Guo, J. Zhao, Q. Ouyang. J. Pharm. Biomed. Anal.60, 92 (2012). (http://dx.doi.org/10.1016/j.jpba.2011.10.020)Suche in Google Scholar PubMed
C. J. Uribe-Hernández, J. B. Hurtado-Ramos, E. R. Olmedo-Arlega, M. A. Martinez-Sosa. J. Ess. Oil Res.4, 647 (1999). (http://dx.doi.org/10.1080/10412905.1992.9698152)Suche in Google Scholar
M. Sandasi, G. P. P. Kamatou, C. Gavaghan, M. Baranska, A. M. Viljoen. Vib. Spectrosc.57, 242 (2011). (http://dx.doi.org/10.1016/j.vibspec.2011.08.002)Suche in Google Scholar
H. Schulz, B. Schrader, R. Quilitzsch, S. Pfeffer, H. Krüger. J. Agric. Food Chem.51, 2475 (2003). (http://dx.doi.org/10.1021/jf021139r)Suche in Google Scholar PubMed
H. Schulz, M. Baranska, H.-H. Belz, P. Rösch, M. A. Strehle, J. Popp. Vib. Spectrosc.35, 81 (2004). (http://dx.doi.org/10.1016/j.vibspec.2003.12.014)Suche in Google Scholar
H. Schulz, G. Özkan, M. Baranska, H. Krüger, M. Özcan. Vib. Spectrosc.39, 249 (2005). (http://dx.doi.org/10.1016/j.vibspec.2005.04.009)Suche in Google Scholar
Q. Chen, J. Zhao, X. Huang, H. Zhang, M. Liu. Microchem. J.83, 42 (2006). (http://dx.doi.org/10.1016/j.microc.2006.01.023)Suche in Google Scholar
H. Schulz, U. H. Engelhardt, A. Wegent, H.-H. Drews, S. Lapczynski. J. Agric. Food Chem.47, 5064 (1999). (http://dx.doi.org/10.1021/jf9813743)Suche in Google Scholar PubMed
C. W. Huck, W. Guggenbichler, G. K. Bonn. Anal. Chim. Acta538, 195 (2005). (http://dx.doi.org/10.1016/j.aca.2005.01.064)Suche in Google Scholar
S. Combrinck, A. A. Bosman, B. M. Botha, W. du Plooy, R. I. McCrindle. J. Ess. Oil Res.18, 80 (2006).Suche in Google Scholar
J. M. Watt, M. G. Breyer-Brandwijk. The Medicinal and Poisonous Plants of Southern and Eastern Africa. Being an Account of their Medicinal and other Uses, Chemical Composition, Pharmacological Effects and Toxicology in Man and Animals, 2nd ed., E. and S. Livingstone, Edinburgh (1962).Suche in Google Scholar
D. K. Olivier, E. A. Shikanga, S. Combrinck, R. W. M. Krause, T. Regnier, T. P. Dlamini. S. Afr. J. Bot.76, 58 (2010). (http://dx.doi.org/10.1016/j.sajb.2009.07.002)Suche in Google Scholar
E. A. Shikanga. Bioactive Polar Compounds from South African Lippia species, M Tech dissertation, Tshwane University of Technology, Pretoria (2008).Suche in Google Scholar
S. P. Lepule. Secondary Metabolite Profiles of Lippia scaberrima Sond. from Gold Mine Tailings, M Tech dissertation, Tshwane University of Technology, Pretoria (2011).Suche in Google Scholar
P. M. Dewick. Medicinal Natural Products: A Biosynthetic Approach, 3rd ed., John Wiley, Chichester (2009).Suche in Google Scholar
M. Kosar, B. Bozan, F. Temelli, K. H. C. Baser. Food Chem.103, 952 (2007). (http://dx.doi.org/10.1016/j.foodchem.2006.09.049)Suche in Google Scholar
I. M. Weiersbye, E. T. F. Witkowski, M. T. Reichardt. Bothalia36, 10 (2006).Suche in Google Scholar
E. T. F. Witkowski, I. M. Weiersbye. Plant Ecology and Conservation Series, No. 6, Report to Anglo American plc and AngloGold, p. 111 (1998).Suche in Google Scholar
N. S. Mokgalaka, S. Combrinck, P. Lepule, T. Regnier, I. Weiersbye. Proceeding of the Mine Closure Conference, Australian Centre for Geomechanics, Perth, Australia, p. 529 (2009).Suche in Google Scholar
S. J. Murch, Kamran Haq, H. P. Vasanth Rupasinghe, K. Praveen Saxena. Environ. Exp. Bot.49, 251 (2003). (http://dx.doi.org/10.1016/S0098-8472(02)00090-4)Suche in Google Scholar
B. Steuer, H. Schulz, E. Läger. Food Chem.72, 113 (2001). (http://dx.doi.org/10.1016/S0308-8146(00)00209-0)Suche in Google Scholar
© 2013 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Preface
- Polymeric sorbents for removal of Cr(VI) from environmental samples
- Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: Root development and X-ray absorption spectroscopy studies
- Source apportionment of polycyclic aromatic hydrocarbons in sediments from polluted rivers
- Near-infrared spectroscopy and chemometrics for rapid profiling of plant secondary metabolites
- Adsorption of radiocesium from aqueous solution using chemically modified pine cone powder
- Sustainable analytical chemistry—more than just being green
- Departure from local thermal equilibrium during ICP-AES and FAES: Characterization in terms of collisional radiative recombination activation energy
- Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH-, Cl-, CO32-, SO42-, and PO43- systems (IUPAC Technical Report)
Artikel in diesem Heft
- Preface
- Polymeric sorbents for removal of Cr(VI) from environmental samples
- Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: Root development and X-ray absorption spectroscopy studies
- Source apportionment of polycyclic aromatic hydrocarbons in sediments from polluted rivers
- Near-infrared spectroscopy and chemometrics for rapid profiling of plant secondary metabolites
- Adsorption of radiocesium from aqueous solution using chemically modified pine cone powder
- Sustainable analytical chemistry—more than just being green
- Departure from local thermal equilibrium during ICP-AES and FAES: Characterization in terms of collisional radiative recombination activation energy
- Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH-, Cl-, CO32-, SO42-, and PO43- systems (IUPAC Technical Report)