Polymeric sorbents for removal of Cr(VI) from environmental samples
-
Vusumzi Pakade
Abstract
Chromium (Cr) is an important raw material in some chemical industries including paint, pigments, textiles, leather tanning, steel fabrication, electroplating, cement preservation, and canning industries. Once in the environment, Cr exists in various oxidation states depending on pH and concentration. Trivalent [Cr(III)] and hexavalent [Cr(VI)] forms are the most common with Cr(VI) being the most toxic to biota. The review discusses various types of polymeric sorbents that have been prepared for the extraction of Cr(VI) from environmental samples, mostly aqueous samples. Sorbents are categorized into biosorbents, hybrid sorbents, synthetic polymeric, and modified natural polymeric sorbents. Most of the emphasis will be on the advantages and disadvantages of different synthetic polymeric sorbents. Important parameters that define the performance of the sorbents, that is, binding capacity, equilibration time, optimum sample pH, and selectivity, are compared.
IARC (International Agency for Research on Cancer), IARC monographs on the evaluation of carcinogenic risks to humans: Overall Evaluation of Carcinogenicity. An Updating of IARC Monographs, Vols. 1–42, Supplement 7, WHO, Lyon, France (1987).Search in Google Scholar
C. Wei, S. German, S. Basak, K. Rajeshwar. J. Electrochem. Soc.140, L60 (1993). (http://dx.doi.org/10.1149/1.2056247)Search in Google Scholar
F. J. Rodriguez, S. Gutierrez, J. G. Ibanez, J. L. Bravo, N. Batina. Environ. Sci. Technol.34, 2018 (2000). (http://dx.doi.org/10.1021/es990940n)Search in Google Scholar
T. J. Yao, T. Y. Cui, J. Wu, Q. Z. Chen, S. W. Lu, K. N. Sun. Polym. Chem.2, 2893 (2011). (http://dx.doi.org/10.1039/c1py00311a)Search in Google Scholar
S. Hena. J. Hazard. Mater.181, 474 (2010). (http://dx.doi.org/10.1016/j.jhazmat.2010.05.037)Search in Google Scholar PubMed
E. Uğuzdoğan, E. B. Denkbaş, O. S. Kabasakal. J. Hazard. Mater.177, 119 (2010). (http://dx.doi.org/10.1016/j.jhazmat.2009.12.004)Search in Google Scholar PubMed
G. Bayramoğlu, M. Y. Arıca. Chem. Eng. J.139, 20 (2008). (http://dx.doi.org/10.1016/j.cej.2007.07.068)Search in Google Scholar
V. Neagu, S. Mikhalovsky. J. Hazard. Mater.183, 533 (2010). (http://dx.doi.org/10.1016/j.jhazmat.2010.07.057)Search in Google Scholar PubMed
M. Bhaumik, A. Maity, V. V. Srinivasu, M. S. Onyango. J. Hazard. Mater.190, 381 (2011). (http://dx.doi.org/10.1016/j.jhazmat.2011.03.062)Search in Google Scholar PubMed
P. A. Kumar, S. Chakraborty, M. Ray. Chem. Eng. J.141, 130 (2008). (http://dx.doi.org/10.1016/j.cej.2007.11.004)Search in Google Scholar
T. Liu, L. Zhao, D. Sun, X. Tan. J. Hazard. Mater.184, 724 (2010). (http://dx.doi.org/10.1016/j.jhazmat.2010.08.099)Search in Google Scholar PubMed
J. Hu, I. M. C. Lo, G. Chen. Water Sci. Technol.50, 139 (2004).Search in Google Scholar
Z. Wu, S. Li, J. Wan, Y. Wang. J. Mol. Liq.170, 25 (2012). (http://dx.doi.org/10.1016/j.molliq.2012.03.016)Search in Google Scholar
M. Owlad, M. K. Aroua, W. Ashri, W. Daud, S. Baroutian. Water Air Soil Pollut.200, 59 (2009). (http://dx.doi.org/10.1007/s11270-008-9893-7)Search in Google Scholar
B. L. Rivas, G. V. Seguel, C. Ancatripai. Polym. Bull.44, 445 (2000). (http://dx.doi.org/10.1007/s002890070064)Search in Google Scholar
C. Kantipuly, S. Katragadda, A. Chow, H. D. Gesser. Talanta37, 491 (1990). (http://dx.doi.org/10.1016/0039-9140(90)80075-Q)Search in Google Scholar PubMed
H. Li, Z. Li, T. Liu, X. Xiao, Z. Peng, L. Deng. Bioresource Technol.99, 6271 (2008). (http://dx.doi.org/10.1016/j.biortech.2007.12.002)Search in Google Scholar PubMed
V. Neagu. J. Hazard. Mater.171, 410 (2009). (http://dx.doi.org/10.1016/j.jhazmat.2009.06.016)Search in Google Scholar PubMed
V. Pakade, E. Cukrowska, J. Darkwa, N. Torto, L. Chimuka. Water SA37, 529 (2011). (http://dx.doi.org/10.4314/wsa.v37i4.11)Search in Google Scholar
P. Miretzky, A. F. Cirelli. J. Hazard. Mater.180, 1 (2010). (http://dx.doi.org/10.1016/j.jhazmat.2010.04.060)Search in Google Scholar PubMed
Y. G. Zhao, H. Y. Shen, S. D. Pan, M. Q. Hu. J. Hazard. Mater.182, 295 (2010). (http://dx.doi.org/10.1016/j.jhazmat.2010.06.029)Search in Google Scholar PubMed
D. Duranoğlu, I. G. B. Kaya, U. Beker, S. B. Filiz. Chem. Eng. J.181–182, 103 (2012). (http://dx.doi.org/10.1016/j.cej.2011.11.028)Search in Google Scholar
R. R. Sheha, A. A. El-Zahhar. J. Hazard. Mater.150, 795 (2008). (http://dx.doi.org/10.1016/j.jhazmat.2007.05.042)Search in Google Scholar PubMed
Q. Li, L. Sun, Y. Zhang, Y. Qian, J. Zhai. Desalination266, 188 (2011). (http://dx.doi.org/10.1016/j.desal.2010.08.025)Search in Google Scholar
G. J. Copello, F. Varela, R. M. Vivot, L. E. Diaz. Bioresource Technol.99, 6538 (2008). (http://dx.doi.org/10.1016/j.biortech.2007.11.055)Search in Google Scholar PubMed
Y. A. Aydın, N. D. Aksoy. Chem. Eng. J.151, 188 (2009). (http://dx.doi.org/10.1016/j.cej.2009.02.010)Search in Google Scholar
R. Ansari, N. K. Fahim. React. Funct. Polym.67, 367 (2007). (http://dx.doi.org/10.1016/j.reactfunctpolym.2007.02.001)Search in Google Scholar
A. Li, Q. Zhang, G. Zhang, J. Chen, Z. Fei, F. Liu. Chemosphere47, 981 (2002). (http://dx.doi.org/10.1016/S0045-6535(01)00222-3)Search in Google Scholar PubMed
V. Singh, P. Kumari, S. Pande, T. Narayan. Bioresource Technol.100, 1977 (2009). (http://dx.doi.org/10.1016/j.biortech.2008.10.034)Search in Google Scholar PubMed
A. A. Atia. J. Hazard. Mater. B137, 1049 (2006). (http://dx.doi.org/10.1016/j.jhazmat.2006.03.041)Search in Google Scholar PubMed
M. Brdar, M. Šćiban, A. Takači, T. Došenović. Chem. Eng. J.183, 108 (2012). (http://dx.doi.org/10.1016/j.cej.2011.12.036)Search in Google Scholar
Y. S. Shen, S. L. Wang, Y. M. Tzou, Y. Y. Yan, W. H. Kuan. Bioresource Technol.104, 165 (2012). (http://dx.doi.org/10.1016/j.biortech.2011.10.096)Search in Google Scholar PubMed
M. H. Gonzalez, G. C. L. Arauío, C. B. Pelizaro, E. A. Menezes, S. G. Lemos, G. Batista de Sousa, A. R. A. Nogueira. J. Hazard. Mater.159, 252 (2008). (http://dx.doi.org/10.1016/j.jhazmat.2008.02.014)Search in Google Scholar PubMed
E. Pehlivan, H. T. Kahraman. Food Chem.133, 1478 (2012). (http://dx.doi.org/10.1016/j.foodchem.2012.02.037)Search in Google Scholar
T. Altun, E. Pehlivan. Food Chem.132, 693 (2012). (http://dx.doi.org/10.1016/j.foodchem.2011.10.099)Search in Google Scholar
J. Sanchez, B. L. Rivas. Desalination279, 338 (2011). (http://dx.doi.org/10.1016/j.desal.2011.06.029)Search in Google Scholar
Q. Wang, Y. Guan, X. Liu, X. F. Ren, M. Z. Yang. J. Colloid Interface Sci.375, 160 (2012). (http://dx.doi.org/10.1016/j.jcis.2012.02.037)Search in Google Scholar PubMed
Q. Li, Y. Qian, H. Cui, Q. Zhang, R. Tang, J. P. Zhai. Chem. Eng. J.173, 715 (2011). (http://dx.doi.org/10.1016/j.cej.2011.08.035)Search in Google Scholar
Y. Zheng, W. Wang, D. Huang, A. Wang. Chem. Eng. J.191, 154 (2012). (http://dx.doi.org/10.1016/j.cej.2012.02.088)Search in Google Scholar
D. Duranoğlu, A. W. Trochimczuk, U. Beker. Chem. Eng. J.165, 56 (2010). (http://dx.doi.org/10.1016/j.cej.2010.08.054)Search in Google Scholar
R. Zhang, H. Ma, B. Wang. Ind. Eng. Chem. Res.49, 9998 (2010). (http://dx.doi.org/10.1021/ie1008794)Search in Google Scholar
J. Wang, B. Deng, H. Chen, X. Wang, J. Zheng. Environ. Sci. Technol.43, 5223 (2009). (http://dx.doi.org/10.1021/es803710k)Search in Google Scholar PubMed
L. Yang, S. Wu, J. P. Chen. Ind. Eng. Chem. Res.46, 2133 (2007). (http://dx.doi.org/10.1021/ie0611352)Search in Google Scholar
M. R. Samani, S. M. Borghei, A. Olad, M. J. Chaichi. J. Hazard. Mater.184, 248 (2010). (http://dx.doi.org/10.1016/j.jhazmat.2010.08.029)Search in Google Scholar PubMed
P. A. Kumar, S. Chakraborty. J. Hazard. Mater.162, 1086 (2009). (http://dx.doi.org/10.1016/j.jhazmat.2008.05.147)Search in Google Scholar PubMed
K. Hori, M. E. Flavier, S. Kuga, T. B. T. Lam, K. Iiyama. J. Wood Sci.46, 401 (2000). (http://dx.doi.org/10.1007/BF00776404)Search in Google Scholar
A. Kara. J. Appl. Polym. Sci.114, 948 (2009). (http://dx.doi.org/10.1002/app.29169)Search in Google Scholar
S. Li, X. Lu, X. Li, Y. Xue, C. Zhang, J. Lei, C. Wang. J. Colloid Interface Sci.378, 30 (2012). (http://dx.doi.org/10.1016/j.jcis.2012.03.065)Search in Google Scholar PubMed
R. A. A. Muzzarelli. Natural Chelating Polymers, p. 254, Pergamon Press, Oxford (1973).Search in Google Scholar
A. M. Donia, A. A. Atia, K. Z. Elwakeel. J. Hazard. Mater.151, 372 (2008). (http://dx.doi.org/10.1016/j.jhazmat.2007.05.083)Search in Google Scholar PubMed
R. Laus, T. G. Costa, B. Szpoganicz, V. T. Fávere. J. Hazard. Mater.183, 233 (2010). (http://dx.doi.org/10.1016/j.jhazmat.2010.07.016)Search in Google Scholar PubMed
M. Monier, D. M. Ayad, Y. Wei, A. A. Sarhan. J. Hazard. Mater.177, 962 (2010). (http://dx.doi.org/10.1016/j.jhazmat.2010.01.012)Search in Google Scholar PubMed
F.-C. Wu, R.-L. Tseng, R.-S. Juang. J. Environ. Manage.91, 798 (2010). (http://dx.doi.org/10.1016/j.jenvman.2009.10.018)Search in Google Scholar PubMed
C. Gerente, V. K. C. Lee, P. Le Cloirec, G. McKay. Crit. Rev. Environ. Sci. Technol.37, 41 (2007). (http://dx.doi.org/10.1080/10643380600729089)Search in Google Scholar
W. S. Wan Ngah, L. C. Teong, M. A. K. M. Hanafiah. Carbohydr. Polym.83, 1446 (2011). (http://dx.doi.org/10.1016/j.carbpol.2010.11.004)Search in Google Scholar
M. Bhaumik, A. M. V. V. Srinivasu, M. S. Onyango. Chem. Eng. J.181–182, 323 (2012). (http://dx.doi.org/10.1016/j.cej.2011.11.088)Search in Google Scholar
A. Maity, S. Sinha Ray. Macromol. Rapid Commun.29, 1582 (2008). (http://dx.doi.org/10.1002/marc.200800356)Search in Google Scholar
M. R. Karim, C. J. Lee, A. M. S. Chowdhury, N. Nahar, M. S. Lee. Mater. Lett.61, 1688 (2007). (http://dx.doi.org/10.1016/j.matlet.2006.07.100)Search in Google Scholar
A. Kara, E. Demirbel. Water Air Soil Pollut.223, 2387 (2012). (http://dx.doi.org/10.1007/s11270-011-1032-1)Search in Google Scholar PubMed PubMed Central
I. Larraza, M. López-Gónzalez, T. Corrales, G. Marcelo. J. Colloid Interface Sci.385, 24 (2012). (http://dx.doi.org/10.1016/j.jcis.2012.06.050)Search in Google Scholar PubMed
D. Duranoğlu, A. W. Trochimczuk, U. Beker. Chem. Eng. J.187, 193 (2012). (http://dx.doi.org/10.1016/j.cej.2012.01.120)Search in Google Scholar
H. Shen, S. D. Pana, Y. Zhang, X. L. Huang, H. X. Gong. Chem. Eng. J.183, 180 (2012). (http://dx.doi.org/10.1016/j.cej.2011.12.055)Search in Google Scholar
P. R. Andrews, D. J. Craik, J. L. Martin. J. Med. Chem.27, 1648 (1984). (http://dx.doi.org/10.1021/jm00378a021)Search in Google Scholar PubMed
D. H. Williams, J. P. L. Cox, A. J. Doig, M. Gardner, U. Gerhard, P. T. Kaye, A. R. Lal, I. A. Nicholls, C. J. Salter, R. C. Mitchell. J. Am. Chem. Soc.113, 7020 (1991). (http://dx.doi.org/10.1021/ja00018a047)Search in Google Scholar
M. Searle, D. H. Williams, U. Gerhard. J. Am. Chem. Soc.114, 10697 (1992). (http://dx.doi.org/10.1021/ja00053a003)Search in Google Scholar
S. E. Holroyd, P. Groves, M. Searle, U. Gerhard, D. H. Williams. Tetrahedron49, 9171 (1993). (http://dx.doi.org/10.1016/0040-4020(93)80004-D)Search in Google Scholar
K. Karim, F. Breton, R. Rouillon, E. V. Piletska, A. Guerreiro, I. Chianella, S. A. Piletsky. Adv. Drug Deliv. Rev.57, 1795 (2005). (http://dx.doi.org/10.1016/j.addr.2005.07.013)Search in Google Scholar PubMed
S. A. Piletsky, K. Karim, E. V. Piletska, C. J. Day, K. W. Freebairn. Analyst126, 1826 (2001). (http://dx.doi.org/10.1039/b102426b)Search in Google Scholar
U. K. Garg, M. P. Kaur, V. K. Garg, D. Sud. J. Hazard. Mater.140, 60 (2007). (http://dx.doi.org/10.1016/j.jhazmat.2006.06.056)Search in Google Scholar PubMed
K. Aguilar-Arteaga, J. A. Rodriguez, E. Barrado. Anal. Chim.674, 157 (2010).Search in Google Scholar
G. Wu, Z. Wang, J. Wang, C. He. Anal. Chim. Acta582, 304 (2007). (http://dx.doi.org/10.1016/j.aca.2006.09.034)Search in Google Scholar PubMed
Y. Li, N. K. Pradhan, R. Foley, G. K. C. Low. Talanta57, 1143 (2002). (http://dx.doi.org/10.1016/S0039-9140(02)00196-0)Search in Google Scholar
Z. Wang, F. Liao. J. Nanomater. (2012). Article ID 682802 682802. (http://dx.doi.org/10.1155/2012/)Search in Google Scholar
M. Jain, V. K. Garg, K. Kadirvelu. J. Hazard. Mater.162, 365 (2009). (http://dx.doi.org/10.1016/j.jhazmat.2008.05.048)Search in Google Scholar PubMed
D. H. Thomas, J. S. Rohrer, P. E. Jackson, T. Pak, J. N. Scott. J. Chromatogr., A956, 255 (2002).Search in Google Scholar
J. B. Zhou, P. X. Wu, Z. Dang, N. Zhu, P. Li, J. Wu, X. Wang. Chem. Eng. J.162, 1035 (2010). (http://dx.doi.org/10.1016/j.cej.2010.07.016)Search in Google Scholar
L. M. Cozmuta, A. M. Cozmuta, A. Peter, C. Nicula, E. B. Nsimba, H. Tutu. Water SA38, 269 (2012). (http://dx.doi.org/10.4314/wsa.v38i2.13)Search in Google Scholar
R. R. Sheha, A. A. El-Zahhar. J. Hazard. Mater.150, 795 (2008). (http://dx.doi.org/10.1016/j.jhazmat.2007.05.042)Search in Google Scholar PubMed
J. Li, X. Miao, Y. Hao, J. G. Zhao, X. Y. Sun, L. Wang. J. Colloid Interface Sci.318, 309 (2008). (http://dx.doi.org/10.1016/j.jcis.2007.09.093)Search in Google Scholar PubMed
G. Bayramoglu, M. Y. Arıca. J. Hazard. Mater.187, 213 (2011). (http://dx.doi.org/10.1016/j.jhazmat.2011.01.022)Search in Google Scholar PubMed
Y. Pang, G. M. Zeng, L. Tang, Y. Zhang, Y. Y. Liu, X. X. Lei, Z. Li, J. Zhang, Z. Liu, Y. Xiong. Chem. Eng. J.175, 222 (2011). (http://dx.doi.org/10.1016/j.cej.2011.09.098)Search in Google Scholar
D. Chauhan, M. Jaiswal, N. Sankararamakrishnan. Carbohydr. Polym.88, 670 (2012). (http://dx.doi.org/10.1016/j.carbpol.2012.01.014)Search in Google Scholar
A. Perez-Fonseca, C. Gomez, H. Davila, R. Gonzalez-Nunez, J. R. Robledo-Ortíz, M. O. Vazquez-Lepe, A. Herrera-Gomez. Ind. Eng. Chem. Res.51, 5939 (2012). (http://dx.doi.org/10.1021/ie201242x)Search in Google Scholar
K. Anupam, S. Dutta, C. Bhattacharjee, S. Datta. Chem. Eng. J.173, 135 (2011). (http://dx.doi.org/10.1016/j.cej.2011.07.049)Search in Google Scholar
S. Pandey, S. B. Mishra. J. Colloid Interface Sci.361, 509 (2011). (http://dx.doi.org/10.1016/j.jcis.2011.05.031)Search in Google Scholar PubMed
S. Recillas, J. Colón, E. Casals, E. González, V. Puntes, A. Sánchez, X. Font. J. Hazard. Mater.184, 425 (2010). (http://dx.doi.org/10.1016/j.jhazmat.2010.08.052)Search in Google Scholar PubMed
X. S. Wang, Y. P. Tang, S. R. Tao. Adsorption14, 823 (2008). (http://dx.doi.org/10.1007/s10450-008-9145-6)Search in Google Scholar
S. Chen, Q. Yue, B. Gao, Q. Li, X. Xu, K. Fu. Bioresource Technol.113, 114 (2012). (http://dx.doi.org/10.1016/j.biortech.2011.11.110)Search in Google Scholar PubMed
Y. Li, J. Li, Y. Zhang. J. Hazard. Mater.227–228, 211 (2012). (http://dx.doi.org/10.1016/j.jhazmat.2012.05.034)Search in Google Scholar PubMed
V. K. Gupta, A. Rastogi. J. Hazard. Mater.163, 396 (2009). (http://dx.doi.org/10.1016/j.jhazmat.2008.06.104)Search in Google Scholar PubMed
S. Deng, D. P. Ting. Environ. Sci. Technol.39, 8490 (2005). (http://dx.doi.org/10.1021/es050697u)Search in Google Scholar PubMed
S. Mona, A. Kaushik, C. P. Kaushik. Bioresource Technol.102, 3200 (2011). (http://dx.doi.org/10.1016/j.biortech.2010.11.005)Search in Google Scholar PubMed
V. Marjanović, S. Lazarević, I. Janković-Častvan, B. Potkonjak, Đ. Janaćković, R. Petrović. Chem. Eng. J.166, 198 (2011). (http://dx.doi.org/10.1016/j.cej.2010.10.062)Search in Google Scholar
© 2013 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Preface
- Polymeric sorbents for removal of Cr(VI) from environmental samples
- Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: Root development and X-ray absorption spectroscopy studies
- Source apportionment of polycyclic aromatic hydrocarbons in sediments from polluted rivers
- Near-infrared spectroscopy and chemometrics for rapid profiling of plant secondary metabolites
- Adsorption of radiocesium from aqueous solution using chemically modified pine cone powder
- Sustainable analytical chemistry—more than just being green
- Departure from local thermal equilibrium during ICP-AES and FAES: Characterization in terms of collisional radiative recombination activation energy
- Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH-, Cl-, CO32-, SO42-, and PO43- systems (IUPAC Technical Report)
Articles in the same Issue
- Preface
- Polymeric sorbents for removal of Cr(VI) from environmental samples
- Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: Root development and X-ray absorption spectroscopy studies
- Source apportionment of polycyclic aromatic hydrocarbons in sediments from polluted rivers
- Near-infrared spectroscopy and chemometrics for rapid profiling of plant secondary metabolites
- Adsorption of radiocesium from aqueous solution using chemically modified pine cone powder
- Sustainable analytical chemistry—more than just being green
- Departure from local thermal equilibrium during ICP-AES and FAES: Characterization in terms of collisional radiative recombination activation energy
- Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH-, Cl-, CO32-, SO42-, and PO43- systems (IUPAC Technical Report)