Source apportionment of polycyclic aromatic hydrocarbons in sediments from polluted rivers
-
Stanley Moyo
Abstract
Over the past few decades, in response to growing concerns about the impact of polycyclic aromatic hydrocarbons (PAHs) on human health, a variety of environmental forensics and geochemical techniques have emerged for studying organic pollutants. These techniques include chemical fingerprinting, receptor modeling, and compound-specific stable isotope analysis (CSIA). Chemical fingerprinting methodology involves the use of diagnostic ratios. Receptor modeling techniques include the chemical mass balance (CMB) model and multivariate statistics. Multivariate techniques include factor analysis with multiple linear regression (FA/MLR), positive matrix factorization (PMF), and UNMIX. This article reviews applications of chemical fingerprinting, receptor modeling, and CSIA; comments on their uses; and contrasts the strengths and weaknesses of each methodology.
A. Amit, A. Taneja. Chemosphere65, 449 (2006).Search in Google Scholar
G. Grimmer, J. Jacob, K. W. Naujack, G. Detbarn. Anal. Chem.55, 892 (1983). (http://dx.doi.org/10.1021/ac00257a018)Search in Google Scholar
U. Varanasi, J. E. Stein. Environ. Health Perspect.90, 93 (1991). (http://dx.doi.org/10.2307/3430850)Search in Google Scholar
J. E. Stein, T. K. Collier, W. L. Reicert, E. Casillas, T. Hom, U. Varanasi. Environ. Toxicol. Chem.11, 701 (1992). (http://dx.doi.org/10.1002/etc.5620110513)Search in Google Scholar
E. Cavalieri, E. Rogan. Environ. Health Perspect.64, 69 (1985). (http://dx.doi.org/10.1289/ehp.856469)Search in Google Scholar PubMed PubMed Central
M. P. Zakaria, H. Takada, S. Tsutsumi, K. Ohno, J. Yamada, E. Kouno, H. Kumata. Environ. Sci. Technol.36, 1907 (2002). (http://dx.doi.org/10.1021/es011278+)Search in Google Scholar PubMed
X. Liu, T. Korenaga. J. Health Sci.47, 446 (2001). (http://dx.doi.org/10.1248/jhs.47.446)Search in Google Scholar
F. Sun, D. Littlejohn, M. David Gibson. Anal. Chim. Acta364, 1 (1998). (http://dx.doi.org/10.1016/S0003-2670(98)00186-X)Search in Google Scholar
D. Mackay, W. Y. Shiu, K. C. Ma, S. C. Lee. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, p. 71, CRC Press, New York (2006).Search in Google Scholar
A. Masih, A. Taneja. Chemosphere65, 449 (2006). (http://dx.doi.org/10.1016/j.chemosphere.2006.01.062)Search in Google Scholar PubMed
H. M. Hwang, T. L. Wade, J. L. Sericano. Atmos. Environ.37, 2259 (2003). (http://dx.doi.org/10.1016/S1352-2310(03)00090-6)Search in Google Scholar
M. Tobiszewski, J. Namie?nik. Environ. Pollut.162, 110 (2012). (http://dx.doi.org/10.1016/j.envpol.2011.10.025)Search in Google Scholar PubMed
M. Odabasi, E. Cetin, A. Sofuoglu. Atmos. Environ.40, 6615 (2006). (http://dx.doi.org/10.1016/j.atmosenv.2006.05.051)Search in Google Scholar
Z. Wang, K. Li, P. Lambert, C. Yang. J. Chromatogr., A1139, 14 (2007).Search in Google Scholar
H. J. Costa, T. C. Sauer. Environ. Forensics6, 9 (2005). (http://dx.doi.org/10.1080/15275920590913859)Search in Google Scholar
M. M. R. Mostert, G. A. Ayoko, S. Kokot. Trends Anal. Chem.29, 430 (2010). (http://dx.doi.org/10.1016/j.trac.2010.02.009)Search in Google Scholar
J. Albaiges, B. Morales-Nin, F. Vilas. Mar. Pollut. Bull.53, 205 (2006). (http://dx.doi.org/10.1016/j.marpolbul.2006.03.012)Search in Google Scholar PubMed
J. W. Short, G. V. Irvine, D. H. Mann, J. M. Maselko, J. J. Pella, M. R. Lindeberg. Environ. Sci. Technol.41, 1245 (2007). (http://dx.doi.org/10.1021/es0620033)Search in Google Scholar PubMed
S. A. Stout, S. Emsbo-Mattingly. Org. Geochem.39, 801 (2008). (http://dx.doi.org/10.1016/j.orggeochem.2008.04.017)Search in Google Scholar
R. Booth, K. Gribben. Environ. Forensics6, 133 (2005). (http://dx.doi.org/10.1080/15275920590952757)Search in Google Scholar
S. Almaula. Environ. Forensics6, 143 (2005). (http://dx.doi.org/10.1080/15275920590952775)Search in Google Scholar
M. J. Ahrens, D. J. Morrisey. Oceanogr. Mar. Biol. Ann. Rev.43, 69 (2005).Search in Google Scholar
H. Willsch, M. Radke. Polycyclic Aromat. Compd.7, 231 (1995). (http://dx.doi.org/10.1080/10406639508009627)Search in Google Scholar
P. W. French. Environ. Pollut.103, 37 (1998). (http://dx.doi.org/10.1016/S0269-7491(98)00135-3)Search in Google Scholar
R. Johnson, R. M. Bustin. Int. J. Coal Geol.68, 57 (2006). (http://dx.doi.org/10.1016/j.coal.2005.10.003)Search in Google Scholar
C. Pies, Y. Yang, T. Hofmann. J. Soils Sediments7, 216 (2007). (http://dx.doi.org/10.1065/jss2007.06.233)Search in Google Scholar
A. Koziol, J. Pudykiewicz. Chemosphere45, 1181 (2001). (http://dx.doi.org/10.1016/S0045-6535(01)00004-2)Search in Google Scholar
F. Wania, D. Mackay. Environ. Sci. Technol.30, 390A (1996). (http://dx.doi.org/10.1021/es962399q)Search in Google Scholar PubMed
Y. Liu, L. Chen, Q. Huang, W. Li, Y. Tang, J. Zhao. Sci. Total Environ.407, 2931 (2009). (http://dx.doi.org/10.1016/j.scitotenv.2008.12.046)Search in Google Scholar PubMed
E. Galarneau. Atmos. Environ.42, 8139 (2008). (http://dx.doi.org/10.1016/j.atmosenv.2008.07.025)Search in Google Scholar
A. Katsoyiannis, E. Terzi, Q.-Y. Cai. Chemosphere69, 1337 (2007). (http://dx.doi.org/10.1016/j.chemosphere.2007.05.084)Search in Google Scholar PubMed
X. L. Zhang, S. Tao, W. X. Liu, Y. Yang, Q. Zuo, S. Z. Liu. Environ. Sci. Technol.39, 9109 (2005). (http://dx.doi.org/10.1021/es0513741)Search in Google Scholar PubMed
G. Gordon. Environ. Sci. Technol.22, 1132 (1988). (http://dx.doi.org/10.1021/es00175a002)Search in Google Scholar PubMed
G. C. Fang, C. N. Chang, Y.-S. Wu, P. P. C. Fu, I. L. Yang, M. H. Chen. Sci. Total Environ.327, 135 (2004). (http://dx.doi.org/10.1016/j.scitotenv.2003.10.016)Search in Google Scholar PubMed
X. J. Wang, R. M. Liu, K. Y. Wang, J. D. Hu, Y. B. Ye, S. C. Zhang, F. L. Xu, S. Tao. Environ. Geol.49, 1208 (2006). (http://dx.doi.org/10.1007/s00254-005-0165-1)Search in Google Scholar
X. Q. Wang, M. Wang, H. L. Ge, Q. Chen, Y. B. Xu. Physica E30, 101 (2005). (http://dx.doi.org/10.1016/j.physe.2005.07.012)Search in Google Scholar
A. Navarro, R. Tauler, S. Lacorte, D. Barceló. Anal. Bioanal. Chem.385, 1020 (2006). (http://dx.doi.org/10.1007/s00216-006-0451-0)Search in Google Scholar
K. Sielaff, J. Einax. J. Soils Sediments7, 45 (2007). (http://dx.doi.org/10.1065/jss2006.11.193)Search in Google Scholar
A. Facchinelli, E. Sacchi, L. Mallen. Environ. Pollut.114, 313 (2001). (http://dx.doi.org/10.1016/S0269-7491(00)00243-8)Search in Google Scholar
S. Kokot, M. Grigg, H. Panayiotou, T. D. Phuong. Electroanalysis10, 1081 (1998). (http://dx.doi.org/10.1002/(SICI)1521-4109(199811)10:16<1081::AID-ELAN1081>3.0.CO;2-X)Search in Google Scholar
X. Z. Yu, Y. Gao, S. C. Wu, H. B. Zhang, K. C. Cheung, M. H. Wong. Chemosphere65, 1500 (2006). (http://dx.doi.org/10.1016/j.chemosphere.2006.04.006)Search in Google Scholar
S. Stout, A. D. Uhler, K. J. McCarthy. “Chemical fingerprinting of hydrocarbons”, in Introduction to Environmental Forensics, p. 147, Academic Press, New York (2001).Search in Google Scholar
K. J. Emsbo-Mattingly, S. A. Stout, A. D. Uhler, G. S. Douglas, K. J. McCarthy, A. Coleman. Land Contam. Reclam.14, 403 (2006). (http://dx.doi.org/10.2462/09670513.735)Search in Google Scholar
S. A. Stout, T. P. Graan. Environ. Sci. Technol.44, 2932 (2010). (http://dx.doi.org/10.1021/es903353z)Search in Google Scholar
H. Budzinski, I. Jones, J. Bellocq, C. Piérard, P. Garrigues. Mar. Chem.58, 85 (1997). (http://dx.doi.org/10.1016/S0304-4203(97)00028-5)Search in Google Scholar
R. M. Dickhut, E. A. Canuel, K. E. Gustafson, K. Liu, K. M. Arzayus, S. E. Walker, G. Edgecombe, M. O. Gaylor, E. H. MacDonald. Environ. Sci. Technol.34, 4635 (2000). (http://dx.doi.org/10.1021/es000971e)Search in Google Scholar
A. Stark, T. Abrajano Jr., J. Hellou, J. L. Metcalf-Smith. Org. Geochem.34, 225 (2003). (http://dx.doi.org/10.1016/S0146-6380(02)00167-5)Search in Google Scholar
S. E. Walker, R. M. Dickhut, C. Chisholm-Brause, S. Sylva, C. M. Reddy. Org. Geochem.36, 619 (2005). (http://dx.doi.org/10.1016/j.orggeochem.2004.10.012)Search in Google Scholar
B. Yan, T. A. Abrajano, R. F. Bopp, L. A. Benedict, D. A. Chaky, E. Perry, J. Song, D. P. Keane. Org. Geochem.37, 674 (2006). (http://dx.doi.org/10.1016/j.orggeochem.2006.01.013)Search in Google Scholar
B. Yan, T. A. Abrajano, R. F. Bopp, D. A. Chaky, L. A. Benedict, S. N. Chillrud. Environ. Sci. Technol.39, 7012 (2005). (http://dx.doi.org/10.1021/es0506105)Search in Google Scholar PubMed PubMed Central
M. B. Yunker, R. W. Macdonald, R. Brewer, S. Sylvestre, T. Tuominen, M. Sekela, R. H. Mitchell, D. W. Paton, B. R. Fowler, C. Gray, D. Goyette, D. Sullivan. Assessment of Natural and Anthropogenic Inputs Using PAHs as Tracers. The Fraser River Basin and Strait of Georgia 1987–1997, U.S. Environmental Protection Agency (Ed.), pp. 36–47, EPA, Washington, DC (2000).Search in Google Scholar
M. B. Yunker, R. E. Macdonald. Arctic48, 118 (1995).Search in Google Scholar
B. D. McVeety, R. A. Hites. Atmos. Environ.22, 511 (1988).Search in Google Scholar
U. Ghosh, S. B. Hawthorne. Environ. Sci. Technol.44, 1204 (2010). (http://dx.doi.org/10.1021/es902215p)Search in Google Scholar PubMed
D. S. Page, P. D. Behm, G. S. Douglas, A. E. Bence, W. A. Burns, P. Mankiewicz. Mar. Pollut. Bull.38, 247 (1999). (http://dx.doi.org/10.1016/S0025-326X(98)00142-8)Search in Google Scholar
X. C. Wang, S. Sun, H. Q. Ma, Y. Liu. Mar. Pollut. Bull.52, 129 (2006). (http://dx.doi.org/10.1016/j.marpolbul.2005.08.010)Search in Google Scholar PubMed
V. Rocher, S. Azimi, R. Moilleron, G. Chebbo. Sci. Total Environ.323, 107 (2004). (http://dx.doi.org/10.1016/j.scitotenv.2003.10.010)Search in Google Scholar PubMed
G. Li, X. Xia, Z. Yang, R. Wang, N. Voulvoulis. Environ. Pollut.144, 985 (2006). (http://dx.doi.org/10.1016/j.envpol.2006.01.047)Search in Google Scholar PubMed
Z. Zhang, J. Huang, G. Yu, H. Hong. Environ. Pollut.130, 249 (2004). (http://dx.doi.org/10.1016/j.envpol.2003.12.002)Search in Google Scholar PubMed
Y. Lang, Z. Cao. In Bioinformatics and Biomedical Engineering (iCBBE), 2010 4thInternational Conference on, p. 1 (2010).Search in Google Scholar
Z. Guo, T. Lin, G. Zhang, Z. Yang, M. Fang. Environ. Sci. Technol.40, 5304 (2006). (http://dx.doi.org/10.1021/es060878b)Search in Google Scholar PubMed
K. Ravindra, E. Wauters, R. Van Grieken. Sci. Total Environ.396, 100 (2008). (http://dx.doi.org/10.1016/j.scitotenv.2008.02.018)Search in Google Scholar PubMed
M. S. Callén, M. T. Cruz, J. M. López, A. M. Mastral. Fuel Process. Technol.92, 176 (2011). (http://dx.doi.org/10.1016/j.fuproc.2010.05.019)Search in Google Scholar
G. Li, X. Xia, Z. Yang, R. Wang, N. Voulvoulis. Environ. Pollut.144, 985 (2006). (http://dx.doi.org/10.1016/j.envpol.2006.01.047)Search in Google Scholar PubMed
H. H. Soclo, P. Garrigues, M. Ewald. Mar. Pollut. Bull.40, 387 (2000). (http://dx.doi.org/10.1016/S0025-326X(99)00200-3)Search in Google Scholar
M. P. Zakaria, H. Takada, S. Tsutsumi, K. Ohno, J. Yamada, E. Kouno, H. Kumata. Environ. Sci. Technol.36, 1907 (2002). (http://dx.doi.org/10.1021/es011278+)Search in Google Scholar PubMed
M. Ricking, H. M. Schulz. Mar. Pollut. Bull.44, 565 (2002). (http://dx.doi.org/10.1016/S0025-326X(02)00062-0)Search in Google Scholar PubMed
Y. Liu, L. Chen, Z. Jianfu, H. Qinghui, Z. Zhiliang, G. Hongwen. Environ. Pollut.154, 298 (2008). (http://dx.doi.org/10.1016/j.envpol.2007.10.020)Search in Google Scholar PubMed
X. J. Luo, S. J. Chen, B. Mai, G. Sheng. Arch. Environ. Contam. Toxicol.55, 11 (2008). (http://dx.doi.org/10.1007/s00244-007-9105-2)Search in Google Scholar PubMed
A. Wagener, C. Hamacher, C. Farias, J. M. Godoy, A. Scofield. Mar. Chem.121, 67 (2010). (http://dx.doi.org/10.1016/j.marchem.2010.03.005)Search in Google Scholar
J. W. Readman, R. F. Mantoura, M. M. Rhead. Sci. Total Environ.66, 73 (1987). (http://dx.doi.org/10.1016/0048-9697(87)90079-9)Search in Google Scholar PubMed
B. D. McVeety, R. A. Hites. Atmos. Environ.22, 511 (1988).Search in Google Scholar
M. B. Yunker, R. W. Macdonald, R. Vingarzan, R. H. Mitchell, D. Goyette, S. Sylvestre. Org. Geochem.33, 489 (2002). (http://dx.doi.org/10.1016/S0146-6380(02)00002-5)Search in Google Scholar
D. Mackay, W. Y. Shiu, K. C. Ma, S. C. Lee. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, p. 58, CRC Press, New York (2006).Search in Google Scholar
P. Masclet, G. Mouvier, K. Nikolaou. Atmos. Environ.20, 439 (1986).Search in Google Scholar
R. M. Kamens, Z. Guo, J. N. Fulcher, D. A. Bell. Environ. Sci. Technol.22, 103 (1988). (http://dx.doi.org/10.1021/es00166a012)Search in Google Scholar PubMed
T. D. Behymer, R. A. Hites. Environ. Sci. Technol.22, 1311 (1988). (http://dx.doi.org/10.1021/es00176a011)Search in Google Scholar
A. Li, J.-K. Jang, P. A. Scheff. Environ. Sci. Technol.37, 2958 (2003). (http://dx.doi.org/10.1021/es026309v)Search in Google Scholar PubMed
M. P. Fraser, G. R. Cass, B. R. Simoneit, R. A. Rasmussen. Environ. Sci. Technol.32, 1760 (1998). (http://dx.doi.org/10.1021/es970349v)Search in Google Scholar
E. Manoli, A. Kouras, C. Samara. Chemosphere56, 867 (2004). (http://dx.doi.org/10.1016/j.chemosphere.2004.03.013)Search in Google Scholar PubMed
T. Nielsen. Atmos. Environ.22, 2249 (1988).Search in Google Scholar
G. Gordon. Environ. Sci. Technol.22, 1132 (1988). (http://dx.doi.org/10.1021/es00175a002)Search in Google Scholar PubMed
R. C. Henry, C. W. Lewis, P. K. Hopke, H. J. Williamson. Atmos. Environ. (1967)18, 1507 (1984). (http://dx.doi.org/10.1016/0004-6981(84)90375-5)Search in Google Scholar
S. K. Friedlander. Environ. Sci. Technol.7, 235 (1973). (http://dx.doi.org/10.1021/es60075a005)Search in Google Scholar PubMed
L. Xue, Y. Lang, A. Liu, J. Liu. Environ. Monit. Assess.163, 57 (2010). (http://dx.doi.org/10.1007/s10661-009-0816-x)Search in Google Scholar PubMed
M. C. Su, E. R. Christensen, J. F. Karls, S. Kosuru, I. Imamoglu. Environ. Toxicol. Chem.19, 1481 (2000). (http://dx.doi.org/10.1002/etc.5620190603)Search in Google Scholar
K. Li, E. R. Christensen, R. P. V. Gamp, I. Imamoglu. Environ. Sci. Technol.35, 2896 (2001). (http://dx.doi.org/10.1021/es001790f)Search in Google Scholar PubMed
A. Miguel, P. Pereira. Aerosol Sci. Technol.10, 292 (1989).Search in Google Scholar
K. Sexton, K. Liu, S. Hayward, J. Spengler. Atmos. Environ.19, 1225 (1985).Search in Google Scholar
EPA. Chemical Mass Model (EPA-CMB8.2), U.S. Environmental Protection Agency, Washington, DC (2009).Search in Google Scholar
A. Li, J. K. Jang, P. A. Scheff. Environ. Sci. Technol.37, 2958 (2003). (http://dx.doi.org/10.1021/es026309v)Search in Google Scholar PubMed
G. M. Hidy, C. Venkataraman. Chem. Eng. Commun.151, 187 (1996). (http://dx.doi.org/10.1080/00986449608936548)Search in Google Scholar
J. G. Watson. JAPCA34, 619 (1984).Search in Google Scholar
M. C. Su, E. R. Christensen, J. F. Karls. Environ. Pollut.99, 411 (1998). (http://dx.doi.org/10.1016/S0269-7491(97)00182-6)Search in Google Scholar
M. M. Duval, S. K. Friedlander. Source Resolution of Polycyclic Aromatic Hydrocarbons in the Los Angeles Atmospheres Application of a CMB with First Order Decay, U.S. Environmental Protection Agency, Washington, DC (1981).Search in Google Scholar
R. I. Larsen, J. Baker. Environ. Sci. Technol.37, 1873 (2003). (http://dx.doi.org/10.1021/es0206184)Search in Google Scholar PubMed
M. F. Simcik, S. J. Eisenreich, P. J. Lioy. Atmos. Environ.33, 5071 (1999). (http://dx.doi.org/10.1016/S1352-2310(99)00233-2)Search in Google Scholar
G. D. Thurston, J. D. Spengler. J. Climate Appl. Meteorol.24, 1245 (1985).Search in Google Scholar
K. P. Singh, A. Malik, R. Kumar, P. Saxena, S. Sinha. Environ. Monit. Assess.136, 183 (2007). (http://dx.doi.org/10.1007/s10661-007-9674-6)Search in Google Scholar PubMed
C. Zhang, L. Wu, Y. Luo, H. Zhang, P. Christie. Environ. Pollut.151, 470 (2008). (http://dx.doi.org/10.1016/j.envpol.2007.04.017)Search in Google Scholar PubMed
R. C. Brandli, T. D. Bucheli, S. Ammann, A. Desaules, A. Keller, F. Blum, W. A. Stahel. J. Environ. Monit.10, 1278 (2008). (http://dx.doi.org/10.1039/b807319h)Search in Google Scholar PubMed
N. R. Khalili, P. A. Scheff, T. M. Holsen. Atmos. Environ.29, 533 (1995). (http://dx.doi.org/10.1016/1352-2310(94)00275-P)Search in Google Scholar
E. Manoli, D. Voutsa, C. Samara. Atmos. Environ.36, 949 (2002). (http://dx.doi.org/10.1016/S1352-2310(01)00486-1)Search in Google Scholar
R. M. Harrison, D. J. T. Smith, L. Luhana. Environ. Sci. Technol.30, 825 (1996). (http://dx.doi.org/10.1021/es950252d)Search in Google Scholar
P. Fernandez, R. M. Vilanova, J. O. Grimalt. Environ. Sci. Technol.33, 3716 (1999). (http://dx.doi.org/10.1021/es9904639)Search in Google Scholar
Q. Zuo, Y. H. Duan, Y. Yang, X. J. Wang, S. Tao. Environ. Pollut.147, 303 (2007). (http://dx.doi.org/10.1016/j.envpol.2006.05.029)Search in Google Scholar PubMed
Y. Liu, L. Chen, Q. Huang, W. Li, Y. Tang, J. Zhao. Sci. Total Environ.407, 2931 (2009). (http://dx.doi.org/10.1016/j.scitotenv.2008.12.046)Search in Google Scholar PubMed
R. Henry, C. Lewis, J. Collins. Environ. Sci. Technol.28, 823 (1994). (http://dx.doi.org/10.1021/es00054a013)Search in Google Scholar PubMed
D. Kim. Chemosphere76, 1075 (2009). (http://dx.doi.org/10.1016/j.chemosphere.2009.04.031)Search in Google Scholar PubMed PubMed Central
V. P. O’Malley, T. A. Abrajano, J. Hellou. Org. Geochem.21, 809 (1994). (http://dx.doi.org/10.1016/0146-6380(94)90022-1)Search in Google Scholar
V. P. O’Malley, T. A. Abrajano, J. Hellou. Environ. Sci. Technol.30, 634 (1996). (http://dx.doi.org/10.1021/es950371t)Search in Google Scholar
V. P. O’Malley, R. A. Burke, W. S. Schlotzhauer. Org. Geochem.27, 567 (1997). (http://dx.doi.org/10.1016/S0146-6380(97)00087-9)Search in Google Scholar
C. Sun, M. Cooper, C. E. Snape. Rapid Commun. Mass Spectrom.17, 2611 (2003). (http://dx.doi.org/10.1002/rcm.1225)Search in Google Scholar PubMed
C. McRae. Anal. Commun.33, 331 (1996). (http://dx.doi.org/10.1039/ac9963300331)Search in Google Scholar
S. E. Walker. Org. Geochem.36, 619 (2005). (http://dx.doi.org/10.1016/j.orggeochem.2004.10.012)Search in Google Scholar
T. Okuda, H. Kumata, H. Naraoka, H. Takada. Org. Geochem.33, 1737 (2002). (http://dx.doi.org/10.1016/S0146-6380(02)00180-8)Search in Google Scholar
© 2013 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Preface
- Polymeric sorbents for removal of Cr(VI) from environmental samples
- Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: Root development and X-ray absorption spectroscopy studies
- Source apportionment of polycyclic aromatic hydrocarbons in sediments from polluted rivers
- Near-infrared spectroscopy and chemometrics for rapid profiling of plant secondary metabolites
- Adsorption of radiocesium from aqueous solution using chemically modified pine cone powder
- Sustainable analytical chemistry—more than just being green
- Departure from local thermal equilibrium during ICP-AES and FAES: Characterization in terms of collisional radiative recombination activation energy
- Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH-, Cl-, CO32-, SO42-, and PO43- systems (IUPAC Technical Report)
Articles in the same Issue
- Preface
- Polymeric sorbents for removal of Cr(VI) from environmental samples
- Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: Root development and X-ray absorption spectroscopy studies
- Source apportionment of polycyclic aromatic hydrocarbons in sediments from polluted rivers
- Near-infrared spectroscopy and chemometrics for rapid profiling of plant secondary metabolites
- Adsorption of radiocesium from aqueous solution using chemically modified pine cone powder
- Sustainable analytical chemistry—more than just being green
- Departure from local thermal equilibrium during ICP-AES and FAES: Characterization in terms of collisional radiative recombination activation energy
- Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH-, Cl-, CO32-, SO42-, and PO43- systems (IUPAC Technical Report)