Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: Root development and X-ray absorption spectroscopy studies
-
Guadalupe de la Rosa
Abstract
Past reports indicate that some nanoparticles (NPs) affect seed germination; however, the biotransformation of metal NPs is still not well understood. This study investigated the toxicity on seed germination/root elongation and the uptake of ZnO NPs and Zn2+ in alfalfa (Medicago sativa), cucumber (Cucumis sativus), and tomato (Solanum lycopersicum) seedlings. Seeds were treated with ZnO NPs at 0–1600 mg L–1 as well as 0–250 mg L–1 Zn2+ for comparison purposes. Results showed that at 1600 mg L–1 ZnO NPs, germination in cucumber increased by 10 %, and alfalfa and tomato germination were reduced by 40 and 20 %, respectively. At 250 mg Zn2+ L–1, only tomato germination was reduced with respect to controls. The highest Zn content was of 4700 and 3500 mg kg–1 dry weight (DW), for alfalfa seedlings germinated in 1600 mg L–1 ZnO NPs and 250 mg L–1 Zn2+, respectively. Bulk X-ray absorption spectroscopy (XAS) results indicated that ZnO NPs were probably biotransformed by plants. The edge energy positions of NP-treated samples were at the same position as Zn(NO3)2, which indicated that Zn in all plant species was as Zn(II).
ASTM International. ASTM E2456-06, Standard Terminology Relating to Nanotechnology (2012).Search in Google Scholar
K. Senthilkumar, O. Senthilkumar, K. Yamauchi, M. Sato, S. Morito, T. Ohba, M. Nakamura, Y. Fujita. Phys. Status Solidi B246, 885 (2009). (http://dx.doi.org/10.1002/pssb.200880606)Search in Google Scholar
S. Bubel, D. Nikolova, N. Mechau, H. Horst. J. Appl. Phys.105, 64514 (2009). (http://dx.doi.org/10.1063/1.3097754)Search in Google Scholar
R. Rajendran, C. Balakumar, H. A. Mohammed Ahammed, S. Jayakumar, K. Vaideki, E. M. Rajesh. Int. J. Eng. Sci. Technol.2, 202 (2010).Search in Google Scholar
C. Hanley, J. Layne, A. Punnoose, K. M. Reddy, I. Coombs, A. Coombs, K. Feris, D. Wingett. Nanotechnology19, 295103 (2008). (http://dx.doi.org/10.1088/0957-4484/19/29/295103)Search in Google Scholar PubMed PubMed Central
R. D. Handy, R. Owen, E. Valsami-Jones. Ecotoxicology17, 315 (2008). (http://dx.doi.org/10.1007/s10646-008-0206-0)Search in Google Scholar PubMed
B. Asiyanbola, W. Soboyejo. J Surg. Educ.155 (2008). (http://dx.doi.org/10.1016/j.jsurg.2007.11.006)Search in Google Scholar PubMed
A. Baun, N. B. Hartmann, K. Grieger, K. O. Kusk. Ecotoxicology17, 387 (2008). (http://dx.doi.org/10.1007/s10646-008-0208-y)Search in Google Scholar PubMed
T. Xia, M. Kovochich, M. Liong, L. Madler, B. Gilbert, H. Shi, J. I. Yeh, J. I. Zink, A. E. Nel. ACS Nano2, 2121 (2008). (http://dx.doi.org/10.1021/nn800511k)Search in Google Scholar PubMed PubMed Central
L. Wang, L. Wang, W. Ding, F. Zhang. J. Nanosci. Nanotechnol.10, 8617 (2010). (http://dx.doi.org/10.1166/jnn.2010.2483)Search in Google Scholar PubMed
N. M. Franklin, N. J. Rogers, S. C. Apte, G. E. Batley, G. E. Gadd, P. S. Casey. Environ. Sci. Technol.41, 8484 (2007). (http://dx.doi.org/10.1021/es071445r)Search in Google Scholar PubMed
H. Wang, R. L. Wick, B. Xing. Environ. Pollut.157, 1171 (2009). (http://dx.doi.org/10.1016/j.envpol.2008.11.004)Search in Google Scholar PubMed
R. J. Griffitt, K. Hyndman, N. D. Denslow, D. S. Barber. Toxicol. Sci.107, 404 (2009). (http://dx.doi.org/10.1093/toxsci/kfn256)Search in Google Scholar PubMed
D. Lin, B. Xing. Environ. Pollut.150, 243 (2007). (http://dx.doi.org/10.1016/j.envpol.2007.01.016)Search in Google Scholar PubMed
W. M. Lee, Y. J. An, H. Yoon, H. S. Kweon. Environ. Toxicol. Chem.27, 1915 (2008). (http://dx.doi.org/10.1897/07-481.1)Search in Google Scholar PubMed
D. Lin, B. Xing. Environ. Sci. Technol.42, 5580 (2008). (http://dx.doi.org/10.1021/es800422x)Search in Google Scholar PubMed
P. Boonyanitipong, B. Kositsup, P. Kumar, S. Baruah, J. Dutta. Int. J. Biosci. Biochem. Bioinformatics1, 282 (2011).Search in Google Scholar
M. L. López-Moreno, G. De la Rosa, J. A. Hernández-Viezcas, J. Peralta-Videa, J. L. Gardea-Torresdey. J. Agric. Food Chem.58, 3689 (2010). (http://dx.doi.org/10.1021/jf904472e)Search in Google Scholar PubMed PubMed Central
G. De la Rosa, M. L. López-Moreno, J. Hernández-Viezcas, J. R. Peralta-Videa, J. L. Gardea-Torresdey. Int. J. Nanotechnol.8, 492 (2011). (http://dx.doi.org/10.1504/IJNT.2011.040190)Search in Google Scholar
H. Xie, X. Nie, L. Li, C. Song. J. Wuhan Univ. Technol.21, 28 (2006).Search in Google Scholar
U.S. Environmental Protection Agency. Ecological Effects Test Guidelines (1996). http://www.docstoc.com/docs/46344080/8504100---Terrestrial-Plant-Toxicity-Tier-I-(Seedling-Emergence)-(PDF).Search in Google Scholar
H. M. Kingston, L. B. Jassie (Eds.). Introduction to Microwave Sample Preparation, ACS Professional Reference Book Series, American Chemical Society, Washington, DC (1988).Search in Google Scholar
T. Ressler. J. Synchrotron Radiat.5, 118 (1998). (http://dx.doi.org/10.1107/S0909049597019298)Search in Google Scholar PubMed
A. L. Ankudinov, B. Ravel, J. J. Rehr, S. D. Conradson. Phys. Rev. B58, 7565 (1998). (http://dx.doi.org/10.1103/PhysRevB.58.7565)Search in Google Scholar
B. D. Culity. Elements of X-ray Diffraction, 2nd ed., Addison-Wesley, New York (1978).Search in Google Scholar
M. Auffan, J. Rose, M. R. Wiesner, J. Y. Bottero. Environ. Pollut.157, 1127 (2009). (http://dx.doi.org/10.1016/j.envpol.2008.10.002)Search in Google Scholar PubMed
M. Di Salvatore, A. M. Carafa, G. Carratu. Chemosphere73, 1461 (2008). (http://dx.doi.org/10.1016/j.chemosphere.2008.07.061)Search in Google Scholar PubMed
S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, J. R. Lead. Environ. Toxicol. Chem.27, 1825 (2008). (http://dx.doi.org/10.1897/08-090.1)Search in Google Scholar PubMed
E. V. Seeger, A. Baun, M. Kastner, S. Trapp. J. Soils Sed.9, 46 (2009). (http://dx.doi.org/10.1007/s11368-008-0034-0)Search in Google Scholar
T. J. Brunner, P. Wick, P. Manser, P. Spohn, R. N. Grass, L. K. Limbach, A. Bruinink, W. J. Stark. Environ. Sci. Technol.40, 4374 (2006). (http://dx.doi.org/10.1021/es052069i)Search in Google Scholar PubMed
M. N. Al-Yemeni, A. A. Al-Helal. J. King Saud Univ. Sci.15, 39 (2003).Search in Google Scholar
S. Burca, M. Trifu, D. Cachita-Cosma. Biologia27, 31 (1982).Search in Google Scholar
N. Jain, G. D. Ascough, J. A. Van Staden. J. Plant Physiol.165, 1422 (2008). (http://dx.doi.org/10.1016/j.jplph.2008.04.017)Search in Google Scholar PubMed
Y. Ozdener, H. G. Kutbay. Fresenius Environ. Bull.18, 26 (2009).Search in Google Scholar
A. A. El-Ghamery, M. A. El-Kholy, M. A. Abou El-Yousser. Mutat. Res.537, 29 (2003).Search in Google Scholar
E. J. Calabrese, L. A. Baldwin. Annu. Rev. Public Health22, 15 (2001). (http://dx.doi.org/10.1146/annurev.publhealth.22.1.15)Search in Google Scholar PubMed
E. Navarro, A. Baun, R. Behra, N. B. Hartmann, J. Filser, A. J. Miao, A. Quigg, P. H. Santschi, L. Sigg. Ecotoxicology17, 372 (2008). (http://dx.doi.org/10.1007/s10646-008-0214-0)Search in Google Scholar PubMed
T. Herren, U. Feller. J. Plant Physiol.150, 228 (1997). (http://dx.doi.org/10.1016/S0176-1617(97)80208-8)Search in Google Scholar
O. Atici, G. Agar, P. Battal. Biol. Plantarum49, 215 (2005). (http://dx.doi.org/10.1007/s10535-005-5222-9)Search in Google Scholar
G. R. Rout, P. Das. Agronomie23, 3 (2003). (http://dx.doi.org/10.1051/agro:2002073)Search in Google Scholar
F. Gao, C. Liu, C. Qu, L. Zhenh, F. Yang, M. Su, F. Hong. Biometals21, 211 (2008). (http://dx.doi.org/10.1007/s10534-007-9110-y)Search in Google Scholar PubMed
P. Puzio, O. Blaesing, O. Thimm. Production of transgenic plants with an increased tolerance and/or resistance to environmental stress and increased biomass production by inactivating and/or repressing specific genes. Patent Application, WO 2008-EP56091 20080519 (2008).Search in Google Scholar
A. Straczek, G. Sarret, A. Manceau, P. Hinsinger, N. Geoffroy, B. Jaillard. Environ. Exp. Bot.63, 80 (2008). (http://dx.doi.org/10.1016/j.envexpbot.2007.10.034)Search in Google Scholar
J. A. Hernandez-Viezcas, H. Castillo-Michel, A. D. Servin, J. R. Peralta-Videa, J. L. Gardea-Torresdey. Chem. Eng. J.170, 346 (2011). (http://dx.doi.org/10.1016/j.cej.2010.12.021)Search in Google Scholar PubMed PubMed Central
R. A. Kelly, J. C. Andrews, J. G. DeWitt. Microchem. J.71, 231 (2002). (http://dx.doi.org/10.1016/S0026-265X(02)00015-2)Search in Google Scholar
D. E. Salt, R. C. Prince, A. J. M. Baker, I. Raskin, I. J. Pickering. Environ. Sci. Technol.33, 713 (2009). (http://dx.doi.org/10.1021/es980825x)Search in Google Scholar
L. Zhao, J. R. Peralta-Videa, M. Ren, A. Varela-Ramirez, C. Li, J. A. Hernandez-Viezcas, R. J. Aguilera, J. L. Gardea-Torresdey. Chem. Eng. J.184, 1 (2012). (http://dx.doi.org/10.1016/j.cej.2012.01.041)Search in Google Scholar
© 2013 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Preface
- Polymeric sorbents for removal of Cr(VI) from environmental samples
- Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: Root development and X-ray absorption spectroscopy studies
- Source apportionment of polycyclic aromatic hydrocarbons in sediments from polluted rivers
- Near-infrared spectroscopy and chemometrics for rapid profiling of plant secondary metabolites
- Adsorption of radiocesium from aqueous solution using chemically modified pine cone powder
- Sustainable analytical chemistry—more than just being green
- Departure from local thermal equilibrium during ICP-AES and FAES: Characterization in terms of collisional radiative recombination activation energy
- Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH-, Cl-, CO32-, SO42-, and PO43- systems (IUPAC Technical Report)
Articles in the same Issue
- Preface
- Polymeric sorbents for removal of Cr(VI) from environmental samples
- Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: Root development and X-ray absorption spectroscopy studies
- Source apportionment of polycyclic aromatic hydrocarbons in sediments from polluted rivers
- Near-infrared spectroscopy and chemometrics for rapid profiling of plant secondary metabolites
- Adsorption of radiocesium from aqueous solution using chemically modified pine cone powder
- Sustainable analytical chemistry—more than just being green
- Departure from local thermal equilibrium during ICP-AES and FAES: Characterization in terms of collisional radiative recombination activation energy
- Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH-, Cl-, CO32-, SO42-, and PO43- systems (IUPAC Technical Report)