Startseite Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: Root development and X-ray absorption spectroscopy studies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: Root development and X-ray absorption spectroscopy studies

  • Guadalupe de la Rosa , Martha Laura López-Moreno , David de Haro , Cristian E. Botez , José R. Peralta-Videa und Jorge L. Gardea-Torresdey
Veröffentlicht/Copyright: 2. April 2013

Abstract

Past reports indicate that some nanoparticles (NPs) affect seed germination; however, the biotransformation of metal NPs is still not well understood. This study investigated the toxicity on seed germination/root elongation and the uptake of ZnO NPs and Zn2+ in alfalfa (Medicago sativa), cucumber (Cucumis sativus), and tomato (Solanum lycopersicum) seedlings. Seeds were treated with ZnO NPs at 0–1600 mg L–1 as well as 0–250 mg L–1 Zn2+ for comparison purposes. Results showed that at 1600 mg L–1 ZnO NPs, germination in cucumber increased by 10 %, and alfalfa and tomato germination were reduced by 40 and 20 %, respectively. At 250 mg Zn2+ L–1, only tomato germination was reduced with respect to controls. The highest Zn content was of 4700 and 3500 mg kg–1 dry weight (DW), for alfalfa seedlings germinated in 1600 mg L–1 ZnO NPs and 250 mg L–1 Zn2+, respectively. Bulk X-ray absorption spectroscopy (XAS) results indicated that ZnO NPs were probably biotransformed by plants. The edge energy positions of NP-treated samples were at the same position as Zn(NO3)2, which indicated that Zn in all plant species was as Zn(II).

ASTM International. ASTM E2456-06, Standard Terminology Relating to Nanotechnology (2012).Suche in Google Scholar

K. Senthilkumar, O. Senthilkumar, K. Yamauchi, M. Sato, S. Morito, T. Ohba, M. Nakamura, Y. Fujita. Phys. Status Solidi B246, 885 (2009). (http://dx.doi.org/10.1002/pssb.200880606)Suche in Google Scholar

S. Bubel, D. Nikolova, N. Mechau, H. Horst. J. Appl. Phys.105, 64514 (2009). (http://dx.doi.org/10.1063/1.3097754)Suche in Google Scholar

R. Rajendran, C. Balakumar, H. A. Mohammed Ahammed, S. Jayakumar, K. Vaideki, E. M. Rajesh. Int. J. Eng. Sci. Technol.2, 202 (2010).Suche in Google Scholar

C. Hanley, J. Layne, A. Punnoose, K. M. Reddy, I. Coombs, A. Coombs, K. Feris, D. Wingett. Nanotechnology19, 295103 (2008). (http://dx.doi.org/10.1088/0957-4484/19/29/295103)Suche in Google Scholar PubMed PubMed Central

R. D. Handy, R. Owen, E. Valsami-Jones. Ecotoxicology17, 315 (2008). (http://dx.doi.org/10.1007/s10646-008-0206-0)Suche in Google Scholar PubMed

B. Asiyanbola, W. Soboyejo. J Surg. Educ.155 (2008). (http://dx.doi.org/10.1016/j.jsurg.2007.11.006)Suche in Google Scholar PubMed

A. Baun, N. B. Hartmann, K. Grieger, K. O. Kusk. Ecotoxicology17, 387 (2008). (http://dx.doi.org/10.1007/s10646-008-0208-y)Suche in Google Scholar PubMed

T. Xia, M. Kovochich, M. Liong, L. Madler, B. Gilbert, H. Shi, J. I. Yeh, J. I. Zink, A. E. Nel. ACS Nano2, 2121 (2008). (http://dx.doi.org/10.1021/nn800511k)Suche in Google Scholar PubMed PubMed Central

L. Wang, L. Wang, W. Ding, F. Zhang. J. Nanosci. Nanotechnol.10, 8617 (2010). (http://dx.doi.org/10.1166/jnn.2010.2483)Suche in Google Scholar PubMed

N. M. Franklin, N. J. Rogers, S. C. Apte, G. E. Batley, G. E. Gadd, P. S. Casey. Environ. Sci. Technol.41, 8484 (2007). (http://dx.doi.org/10.1021/es071445r)Suche in Google Scholar PubMed

H. Wang, R. L. Wick, B. Xing. Environ. Pollut.157, 1171 (2009). (http://dx.doi.org/10.1016/j.envpol.2008.11.004)Suche in Google Scholar PubMed

R. J. Griffitt, K. Hyndman, N. D. Denslow, D. S. Barber. Toxicol. Sci.107, 404 (2009). (http://dx.doi.org/10.1093/toxsci/kfn256)Suche in Google Scholar PubMed

D. Lin, B. Xing. Environ. Pollut.150, 243 (2007). (http://dx.doi.org/10.1016/j.envpol.2007.01.016)Suche in Google Scholar PubMed

W. M. Lee, Y. J. An, H. Yoon, H. S. Kweon. Environ. Toxicol. Chem.27, 1915 (2008). (http://dx.doi.org/10.1897/07-481.1)Suche in Google Scholar PubMed

D. Lin, B. Xing. Environ. Sci. Technol.42, 5580 (2008). (http://dx.doi.org/10.1021/es800422x)Suche in Google Scholar PubMed

P. Boonyanitipong, B. Kositsup, P. Kumar, S. Baruah, J. Dutta. Int. J. Biosci. Biochem. Bioinformatics1, 282 (2011).Suche in Google Scholar

M. L. López-Moreno, G. De la Rosa, J. A. Hernández-Viezcas, J. Peralta-Videa, J. L. Gardea-Torresdey. J. Agric. Food Chem.58, 3689 (2010). (http://dx.doi.org/10.1021/jf904472e)Suche in Google Scholar PubMed PubMed Central

G. De la Rosa, M. L. López-Moreno, J. Hernández-Viezcas, J. R. Peralta-Videa, J. L. Gardea-Torresdey. Int. J. Nanotechnol.8, 492 (2011). (http://dx.doi.org/10.1504/IJNT.2011.040190)Suche in Google Scholar

H. Xie, X. Nie, L. Li, C. Song. J. Wuhan Univ. Technol.21, 28 (2006).Suche in Google Scholar

U.S. Environmental Protection Agency. Ecological Effects Test Guidelines (1996). http://www.docstoc.com/docs/46344080/8504100---Terrestrial-Plant-Toxicity-Tier-I-(Seedling-Emergence)-(PDF).Suche in Google Scholar

H. M. Kingston, L. B. Jassie (Eds.). Introduction to Microwave Sample Preparation, ACS Professional Reference Book Series, American Chemical Society, Washington, DC (1988).Suche in Google Scholar

T. Ressler. J. Synchrotron Radiat.5, 118 (1998). (http://dx.doi.org/10.1107/S0909049597019298)Suche in Google Scholar PubMed

A. L. Ankudinov, B. Ravel, J. J. Rehr, S. D. Conradson. Phys. Rev. B58, 7565 (1998). (http://dx.doi.org/10.1103/PhysRevB.58.7565)Suche in Google Scholar

B. D. Culity. Elements of X-ray Diffraction, 2nd ed., Addison-Wesley, New York (1978).Suche in Google Scholar

M. Auffan, J. Rose, M. R. Wiesner, J. Y. Bottero. Environ. Pollut.157, 1127 (2009). (http://dx.doi.org/10.1016/j.envpol.2008.10.002)Suche in Google Scholar PubMed

M. Di Salvatore, A. M. Carafa, G. Carratu. Chemosphere73, 1461 (2008). (http://dx.doi.org/10.1016/j.chemosphere.2008.07.061)Suche in Google Scholar PubMed

S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, J. R. Lead. Environ. Toxicol. Chem.27, 1825 (2008). (http://dx.doi.org/10.1897/08-090.1)Suche in Google Scholar PubMed

E. V. Seeger, A. Baun, M. Kastner, S. Trapp. J. Soils Sed.9, 46 (2009). (http://dx.doi.org/10.1007/s11368-008-0034-0)Suche in Google Scholar

T. J. Brunner, P. Wick, P. Manser, P. Spohn, R. N. Grass, L. K. Limbach, A. Bruinink, W. J. Stark. Environ. Sci. Technol.40, 4374 (2006). (http://dx.doi.org/10.1021/es052069i)Suche in Google Scholar PubMed

M. N. Al-Yemeni, A. A. Al-Helal. J. King Saud Univ. Sci.15, 39 (2003).Suche in Google Scholar

S. Burca, M. Trifu, D. Cachita-Cosma. Biologia27, 31 (1982).Suche in Google Scholar

N. Jain, G. D. Ascough, J. A. Van Staden. J. Plant Physiol.165, 1422 (2008). (http://dx.doi.org/10.1016/j.jplph.2008.04.017)Suche in Google Scholar PubMed

Y. Ozdener, H. G. Kutbay. Fresenius Environ. Bull.18, 26 (2009).Suche in Google Scholar

A. A. El-Ghamery, M. A. El-Kholy, M. A. Abou El-Yousser. Mutat. Res.537, 29 (2003).Suche in Google Scholar

E. J. Calabrese, L. A. Baldwin. Annu. Rev. Public Health22, 15 (2001). (http://dx.doi.org/10.1146/annurev.publhealth.22.1.15)Suche in Google Scholar PubMed

E. Navarro, A. Baun, R. Behra, N. B. Hartmann, J. Filser, A. J. Miao, A. Quigg, P. H. Santschi, L. Sigg. Ecotoxicology17, 372 (2008). (http://dx.doi.org/10.1007/s10646-008-0214-0)Suche in Google Scholar PubMed

T. Herren, U. Feller. J. Plant Physiol.150, 228 (1997). (http://dx.doi.org/10.1016/S0176-1617(97)80208-8)Suche in Google Scholar

O. Atici, G. Agar, P. Battal. Biol. Plantarum49, 215 (2005). (http://dx.doi.org/10.1007/s10535-005-5222-9)Suche in Google Scholar

G. R. Rout, P. Das. Agronomie23, 3 (2003). (http://dx.doi.org/10.1051/agro:2002073)Suche in Google Scholar

F. Gao, C. Liu, C. Qu, L. Zhenh, F. Yang, M. Su, F. Hong. Biometals21, 211 (2008). (http://dx.doi.org/10.1007/s10534-007-9110-y)Suche in Google Scholar PubMed

P. Puzio, O. Blaesing, O. Thimm. Production of transgenic plants with an increased tolerance and/or resistance to environmental stress and increased biomass production by inactivating and/or repressing specific genes. Patent Application, WO 2008-EP56091 20080519 (2008).Suche in Google Scholar

A. Straczek, G. Sarret, A. Manceau, P. Hinsinger, N. Geoffroy, B. Jaillard. Environ. Exp. Bot.63, 80 (2008). (http://dx.doi.org/10.1016/j.envexpbot.2007.10.034)Suche in Google Scholar

J. A. Hernandez-Viezcas, H. Castillo-Michel, A. D. Servin, J. R. Peralta-Videa, J. L. Gardea-Torresdey. Chem. Eng. J.170, 346 (2011). (http://dx.doi.org/10.1016/j.cej.2010.12.021)Suche in Google Scholar PubMed PubMed Central

R. A. Kelly, J. C. Andrews, J. G. DeWitt. Microchem. J.71, 231 (2002). (http://dx.doi.org/10.1016/S0026-265X(02)00015-2)Suche in Google Scholar

D. E. Salt, R. C. Prince, A. J. M. Baker, I. Raskin, I. J. Pickering. Environ. Sci. Technol.33, 713 (2009). (http://dx.doi.org/10.1021/es980825x)Suche in Google Scholar

L. Zhao, J. R. Peralta-Videa, M. Ren, A. Varela-Ramirez, C. Li, J. A. Hernandez-Viezcas, R. J. Aguilera, J. L. Gardea-Torresdey. Chem. Eng. J.184, 1 (2012). (http://dx.doi.org/10.1016/j.cej.2012.01.041)Suche in Google Scholar

Published Online: 2013-04-02
Published in Print: 2013-12-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1351/pac-con-12-09-05/html
Button zum nach oben scrollen