Startseite Departure from local thermal equilibrium during ICP-AES and FAES: Characterization in terms of collisional radiative recombination activation energy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Departure from local thermal equilibrium during ICP-AES and FAES: Characterization in terms of collisional radiative recombination activation energy

  • Mark F. Zaranyika und Courtie Mahamadi
Veröffentlicht/Copyright: 10. Juli 2013

Abstract

A simplified rate model is presented showing that when analytes are determined by atomic spectroscopy first in the absence, and then in the presence, of easily ionizable elements (EIEs) as interferents, the change in collisional radiative recombination activation energy, ∆Ea, is zero when the system conforms to local thermal equilibrium (LTE). ∆Ea values of –7.462, –7.925, and –8.898 eV were obtained when Ca(II), Mg(II), and Sr(II), respectively, were determined by inductively coupled plasma-atomic emission spectrometry (ICP‑AES) in the absence and presence of excess Li, while ∆Ea values of –6.477 and –7.481 eV were obtained when Mg(II) and Sr(II), respectively, were determined in the absence and presence of excess K as interferent. A value of –2.223 eV for ∆Ea was obtained when Mg(I) was determined by air-acetylene flame atomic emission spectrometry (FAES) in the absence and presence of excess K. The data confirm that all the systems studied were not in LTE, and suggest pre-LTE collisional radiative recombination in the absence of the interferent in all cases, and that collisional radiative recombination involving electrons from the interferent can occur from the ambipolar diffusion state or the LTE state. Possible causes for departure from LTE, and a possible collisional radiative recombination mechanism to account for the ∆Ea values obtained, are discussed.

M. W. Blades, G. Horlick. Spectrochim. Acta, Part B36, 881 (1981). (http://dx.doi.org/10.1016/0584-8547(81)80080-8)Suche in Google Scholar

R. Herman, C. T. J. Alkemade. In Chemical Analysis by Flame Photometry, pp. 312–318, Wiley-Interscience, New York (1973).Suche in Google Scholar

J. Smit, C. T. J. Alkemade, J. C. M. Verschure. Biochim. Biophys. Acta6, 508 (1951). (http://dx.doi.org/10.1016/0006-3002(50)90128-4)Suche in Google Scholar PubMed

D. S. Hanselman, N. N. Sesi, M. Huang, G. M. Hieftje. Spectrochim. Acta, Part B49, 495 (1994). (http://dx.doi.org/10.1016/0584-8547(94)80042-1)Suche in Google Scholar

N. N. Sesi, G. M. Hieftje. Spectrochim. Acta, Part B51, 1601 (1996). (http://dx.doi.org/10.1016/S0584-8547(96)01560-1)Suche in Google Scholar

B. L. Caughlin, M. W. Blades. Spectrochim. Acta, Part B40, 987 (1985). (http://dx.doi.org/10.1016/0584-8547(85)80068-9)Suche in Google Scholar

D. Sun, Z. Zhang, H. Qian, M. Cai. Spectrochim. Acta, Part B43, 391 (1988).Suche in Google Scholar

M. R. Tripkovic, I. D. Holclajtner-Antunovic. J. Anal. Atom. Spectrosc.8, 349 (1993). (http://dx.doi.org/10.1039/ja9930800349)Suche in Google Scholar

I. D. Holclajtner-Antunovic, M. R. Tripkovic. J. Anal. Atom. Spectrosc.8, 359 (1993). (http://dx.doi.org/10.1039/ja9930800359)Suche in Google Scholar

P. J. Galley, M. Glick, G. M. Hieftje. Spectrochim. Acta, Part B48, 769 (1993). (http://dx.doi.org/10.1016/0584-8547(93)80084-8)Suche in Google Scholar

A. C. Lazar, P. B. Farnsworth. Appl. Spectrosc.53, 457 (1999). (http://dx.doi.org/10.1366/0003702991946749)Suche in Google Scholar

M. Thompson, M. H. Ramsey. Analyst110, 1413 (1985). (http://dx.doi.org/10.1039/an9851001413)Suche in Google Scholar

J. M. Mermet. J. Anal. Atom. Spectrom.13, 419 (1998). (http://dx.doi.org/10.1039/a707197c)Suche in Google Scholar

G. C-Y. Chan, W.-T. Chan. Spectrochim. Acta, Part B58, 1301 (2003). (http://dx.doi.org/10.1016/S0584-8547(03)00055-7)Suche in Google Scholar

S. A. Lehn, K. A. Warner, M. Huang, G. M. Hieftje. Spectrochim. Acta, Part B58, 1785 (2003). (http://dx.doi.org/10.1016/S0584-8547(03)00159-9)Suche in Google Scholar

R. M. Barnes. Trends Anal. Chem.1, 51 (1981). (http://dx.doi.org/10.1016/0165-9936(91)80011-G)Suche in Google Scholar

A. Al-Ammar, R. M. Barnes. Spectrochim. Acta, Part B54, 1063 (1999). (http://dx.doi.org/10.1016/S0584-8547(99)00046-4)Suche in Google Scholar

J. L. Todoli, L. Gras, V. Hermandis, J. Mora. J. Anal. Atom. Spectrom.17, 142 (2002). (http://dx.doi.org/10.1039/b009570m)Suche in Google Scholar

G. C-Y. Chan, G. M. Hieftje. Spectrochim Acta, Part B61, 642 (2006). (http://dx.doi.org/10.1016/j.sab.2005.09.007)Suche in Google Scholar

G. C-Y. Chan, G. M. Hieftje. Spectrochim Acta, Part B59, 163 (2004). (http://dx.doi.org/10.1016/j.sab.2003.10.004)Suche in Google Scholar

J. de Boer, M. Velterop. Fresenius’ J. Anal. Chem.356, 362 (1996). (http://dx.doi.org/10.1007/s0021663560362)Suche in Google Scholar PubMed

M. W. Blades, B. I. Caughlin, Z. H. Walker, L. L. Burton. Prog. Analyst Spectrosc.10, 57 (1987).Suche in Google Scholar

G. M. Hieftje. Spectrochim Acta, Part B47, 3 (1992). (http://dx.doi.org/10.1016/0584-8547(92)80003-Y)Suche in Google Scholar

G. M. Hieftje, M. Huang, S. A. Lehn, K. Warner, G. Gamez, S. Ray, A. Leach. Anal. Sci., Rev.18, 1185 (2002). (http://dx.doi.org/10.2116/analsci.18.1185)Suche in Google Scholar PubMed

M. Huang, P. Y. Yang, D. S. Hanselman, C. A. Monnig, G. M. Hieftje. Spectrochim. Acta, Part B45511 (1990). (http://dx.doi.org/10.1016/0584-8547(90)80126-4)Suche in Google Scholar

K. A. Marshall, G. M. Hieftje. Spectrochim. Acta, Part B43, 841 (1988). (http://dx.doi.org/10.1016/0584-8547(88)80117-4)Suche in Google Scholar

M. Huang, G. M. Hieftje. Spectrochim. Acta, Part B40, 1387 (1985). (http://dx.doi.org/10.1016/0584-8547(85)80163-4)Suche in Google Scholar

K. A. Marshall, G. M. Hieftje. Spectrochim. Acta, Part B43, 851 (1988). (http://dx.doi.org/10.1016/0584-8547(88)80118-6)Suche in Google Scholar

M. Huang, K. A. Marshall, G. M. Hieftje. Anal. Chem.58, 207 (1986). (http://dx.doi.org/10.1021/ac00292a050)Suche in Google Scholar

M. Huang, G. M. Hieftje. Spectrochim. Acta, Part B44, 291 (1989). (http://dx.doi.org/10.1016/0584-8547(89)80033-3)Suche in Google Scholar

C. A. Monnig, K. A. Marshall, G. D. Rayson, G. M. Hieftje. Spectrochim. Acta, Part B43, 1217 (1988). (http://dx.doi.org/10.1016/0584-8547(88)80165-4)Suche in Google Scholar

C. A. Monnig, B. D. Gebhart, K. A. Marshall, G. M. Hieftje. Spectrochim. Acta, Part B45, 261 (1990). (http://dx.doi.org/10.1016/0584-8547(90)80102-O)Suche in Google Scholar

N. N. Sesi, D. S. Hanselman, P. Galley, J. Horner, M Huang, G. M. Hieftje. Spectrochim. Acta, Part B52, 83 (1997). (http://dx.doi.org/10.1016/S0584-8547(96)01562-5)Suche in Google Scholar

S. A. Lehn, G. M. Hieftje. Spectrochim. Acta, Part B58, 1821 (2003). (http://dx.doi.org/10.1016/S0584-8547(03)00164-2)Suche in Google Scholar

S. A. Lehn, K. A. Warner, M. Huang, G. M. Hieftje. Spectrochim Acta, Part B58, 1785 (2003). (http://dx.doi.org/10.1016/S0584-8547(03)00159-9)Suche in Google Scholar

A. F. Parisi, G. D. Rayson, G. M. Hieftje. Spectrochim. Acta, Part B42, 361 (1987). (http://dx.doi.org/10.1016/0584-8547(87)80077-0)Suche in Google Scholar

P. W. J. M. Boumans. Theory of Spectrochemical Excitations, Hilger and Watts, London (1966).Suche in Google Scholar

J. Vicek, V. Pelikan. Spectrochim Acta, Part B47, 681 (1992).Suche in Google Scholar

N. Furuta, G. Horlick. Spectrochim. Acta, Part B37, 53 (1982). (http://dx.doi.org/10.1016/0584-8547(82)80008-6)Suche in Google Scholar

J. M. de Regt, F. P. J. de Groote, J. A. M. van der Mullen, D. C. Schram. Spectrochim. Acta, Part B51, 1371 (1996). (http://dx.doi.org/10.1016/0584-8547(96)01491-7)Suche in Google Scholar

T. Fujimoto. J. Phys. Soc. Jpn.47, 265 (1979). (http://dx.doi.org/10.1143/JPSJ.47.265)Suche in Google Scholar

T. Fujimoto. J. Phys. Soc. Jpn.47, 273 (1979). (http://dx.doi.org/10.1143/JPSJ.47.273)Suche in Google Scholar

T. Fujimoto. J. Phys. Soc. Jpn.49, 1561 (1980). (http://dx.doi.org/10.1143/JPSJ.49.1561)Suche in Google Scholar

T. Fujimoto. J. Phys. Soc. Jpn.49, 1569 (1980). (http://dx.doi.org/10.1143/JPSJ.49.1569)Suche in Google Scholar

D. R. Bates, A. E. Kingston, R. W. P. Mcwhiter. Proc. Roy. Soc. (London) A267, 297 (1962). (http://dx.doi.org/10.1098/rspa.1962.0101)Suche in Google Scholar

D. R. Bates, A. E. Kingston. Planet. Space Sci.11, 1 (1963). (http://dx.doi.org/10.1016/0032-0633(63)90199-5)Suche in Google Scholar

R. W. P. McWhirter, A. G. Hearn. Proc. Phys. Soc.82, 641 (1963). (http://dx.doi.org/10.1088/0370-1328/82/5/301)Suche in Google Scholar

R. W. P. McWhirter. In Spectral Intensities, Plasma Diagnostic Techniques, R. H. Huddlestone, S. L. Leornard (Eds.), Chap. 5, pp. 201–264, Academic Press, New York (1965).Suche in Google Scholar

R. J. Lovett. Spectrochim. Acta, Part B37, 969 (1982). (http://dx.doi.org/10.1016/0584-8547(82)80115-8)Suche in Google Scholar

T. Hasegawa, H. Haraguchi. Spectrochim. Acta, Part B40, 1505 (1985). (http://dx.doi.org/10.1016/0584-8547(85)80174-9)Suche in Google Scholar

G. M. Hieftje, G. D. Rayson, J. W. Olesik. Spectrochim. Acta, Part B40, 167 (1985). (http://dx.doi.org/10.1016/0584-8547(85)80020-3)Suche in Google Scholar

G. D. Rayson, G. M. Hieftje. Spectrochim. Acta, Part B41, 683 (1986). (http://dx.doi.org/10.1016/0584-8547(86)80084-2)Suche in Google Scholar

M. Wu, G. M. Hieftje. Spectrochim. Acta, Part B49, 149 (1994). (http://dx.doi.org/10.1016/0584-8547(94)80014-6)Suche in Google Scholar

G. C-Y. Chan, G. M. Hieftje. Spectrochim. Acta, Part B59, 163 (2004). (http://dx.doi.org/10.1016/j.sab.2003.10.004)Suche in Google Scholar

M. F. Zaranyika, A. Chirenje. Fresenius’ J. Anal. Chem.368, 45 (2000). (http://dx.doi.org/10.1007/s002160000517)Suche in Google Scholar PubMed

M. F. Zaranyika, C. Mahamadi. Spectrosc. Lett.40, 835 (2007). (http://dx.doi.org/10.1080/00387010701436455)Suche in Google Scholar

M. F. Zaranyika, A. T. Chirenje, C. Mahamadi. Spectrosc. Lett.45, 1 (2012). (http://dx.doi.org/10.1080/00387010.2011.579679)Suche in Google Scholar

Spectroflame Modula 90/95 System Operating Manual, Issue (90/95), Spectro Analytical Instruments, GmbH, Germany.Suche in Google Scholar

M. W. Blades. Excitation Mechanisms and Discharge Characteristics: Recent Developments in Inductively Coupled Plasma Emission Spectrometry. Part 2. Applications and Fundamentals, P. W. J. M. Boumanns (Ed.), p. 387, Wiley-Interscience, New York (1987).Suche in Google Scholar

S. L. Leonard. J. Quantit. Spectrosc. Radiation Transfer12, 619 (1972). (http://dx.doi.org/10.1016/0022-4073(72)90171-9)Suche in Google Scholar

P. Serapinas, J. Salkauskas, Z. Ezerniskis, A. Acus. Spectrochim. Acta, Part B65, 15 (2010). (http://dx.doi.org/10.1016/j.sab.2009.10.008)Suche in Google Scholar

A. A. Pupyshev, E. V. Semenova. Spectrochim. Acta, Part B56, 2397 (2001). (http://dx.doi.org/10.1016/S0584-8547(01)00301-9)Suche in Google Scholar

C. W. Allen. Astrophysical Quantities, Athrone Press, London (1955).Suche in Google Scholar

H. H. Willard, L. L. Merritt, J. A. Dean, F. A. Dean Jr. Instrumental Methods of Analysis, 7th ed., p. 232, Wadsworth, London (1988).Suche in Google Scholar

D. R. Lide (Ed.). Handbook of Chemistry and Physics, 73rd ed., pp. 10–211, CRC Press, London (1992–1993).Suche in Google Scholar

A. M. Howatson. An Introduction to Gas Discharges, 2nd ed., p. 27, Pergamon Press, Oxford (1976).Suche in Google Scholar

A. M. Howatson. An Introduction to Gas Discharges, 2nd ed., p. 42, Pergamon Press, Oxford (1976).Suche in Google Scholar

N. Taylor, R. L. Spencer, P. B. Farnworth. J. Anal. Atom. Spectrom.27, 857 (2012). (http://dx.doi.org/10.1039/c2ja10320f)Suche in Google Scholar

F. Aeschbach. Spectrochim. Acta, Part B37, 987 (1982). (http://dx.doi.org/10.1016/0584-8547(82)80116-X)Suche in Google Scholar

Published Online: 2013-07-10
Published in Print: 2013-12-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1351/pac-con-12-11-03/html
Button zum nach oben scrollen