Home Effect of Surface Dilatational Modulus on Foam Flow in a Porous Medium
Article
Licensed
Unlicensed Requires Authentication

Effect of Surface Dilatational Modulus on Foam Flow in a Porous Medium

  • Yang Wang , Jijiang Ge , Guicai Zhang , Ping Jiang , Kaifei Song and Wen Zhang
Published/Copyright: December 9, 2017
Become an author with De Gruyter Brill

Abstract

In order to clarify the role of surface dilatational property in foam flow in a porous medium, three systems were prepared: a system with low surface dilatational modulus and high surface tension, a system with low surface dilatational modulus and low surface tension, and a system with high surface dilatational modulus and low surface tension. By measuring the lamella number and pressure drop across the porous medium, it has been found that differing from flow in a capillary tube, a system with high surface dilatational modulus could achieve a high pressure drop in a porous medium. The conclusion drawn as to the reason is that bubbles with smaller diameter resulting from a structure induced breakup and high dilatational modulus are the main reasons. Flow experiments at 40°C also demonstrate the effect of surface dilatational modulus on the pressure drop.

Kurzfassung

Um die Rolle der Oberflächendilatation bei der Strömung von Schaum in einem porösen Medium zu untersuchen, wurden drei Systeme hergestellt: ein System mit niedrigem Oberflächen-Dilatationsmodul und hoher Oberflächenspannung, ein System mit niedrigem Oberflächen-Dilatationsmodul und geringer Oberflächenspannung und ein System mit hohem Oberflächen-Dilatationsmodul und geringer Oberflächenspannung. Durch die Messung der Lamellenzahl und des Druckabfalls über das poröse Medium konnte festgestellt werden, dass abweichend von der Schaumströmung in einer Kapillare das System mit einem hohen Oberflächen-Dilatationsmodul einen hohen Druckabfall in dem porösen Medium erzielt. Als die zwei wesentlichen Ursachen dafür werden Blasen mit kleinerem Durchmesser, die aus der durch die Struktur resultierenden Trennung entstehen, und der hohe Dilatationsmodul angesehen. Fließ-Experimente bei 40°C zeigen auch den Einfluss des Oberflächen-Dilatationsmoduls auf den Druckabfall.


*Correspondence address, Mr. Yang Wang China university of Petroleum (East China), E-Mail:

Yang Wang, doctor candidate of China university of Petroleum (East China), mainly study on enhanced oil recovery and oilfield chemistry.

Jijiang Ge, professor of China university of Petroleum (East China), mainly study on enhanced oil recovery and oilfield chemistry.

Guicai Zhang, professor of China university of Petroleum (East China), mainly study on enhanced oil recovery and oilfield chemistry.

Ping Jiang, assisted professor of China university of Petroleum (East China), mainly study on enhanced oil recovery and oilfield chemistry.

Kaifei Song, graduate student of China university of Petroleum (East China), mainly study on enhanced oil recovery and oilfield chemistry.

Wen Zhang, graduate student of China university of Petroleum (East China), mainly study on enhanced oil recovery and oilfield chemistry.


References

1. Hirasaki, G. J. and Lawson, J. B.: Mechanisms of foam flow in porous media – apparent viscosity in smooth capillaries. Society of Petroleum Engineers Journal25 (2) (2013) 176190. 10.2118/12129-PASearch in Google Scholar

2. Saintjalmes, A.: Physical chemistry in foam drainage and coarsening. Soft Matter2 (2) (2006) 836849. 10.1039/B606780HSearch in Google Scholar

3. Koehler, S. A., Hilgenfeldt, S. and Stone, H. A.: Liquid flow through aqueous foams: the node-dominated foam drainage equation. Physical Review Letters82 (21) (1999) 42324235. 10.1103/PhysRevLett.82.4232Search in Google Scholar

4. Safouane, M., Saint-Jalmes, A., Bergeron, V. and Langevin, D.: Viscosity effects in foam drainage: newtonian and non-newtonian foaming fluids. European Physical Journal E19 (2) (2006) 195202.PMid:16505946; 10.1140/epje/e2006-00025-4Search in Google Scholar

5. Saintjalmes, A. and Langevin, D.: Time evolution of aqueous foams: drainage and coarsening. Journal of Physics Condensed Matter14 (40) (2002) 93979412. S0953-8984(02)36448-8Search in Google Scholar

6. Pitois, O., Fritz, C. and Vignes-Adler, M.: Liquid drainage through aqueous foam: study of the flow on the bubble scale. Journal of Colloid and Interface Science282 (2) (2005) 458465.PMid:15589553; 10.1016/j.jcis.2004.08.187Search in Google Scholar PubMed

7. Pitois, O., Fritz, C. and Vignes-Adler, M.: Hydrodynamic resistance of a single foam channel, Colloids Surf. A261 (2005) 109. 10.1016/j.colsurfa.2004.11.045Search in Google Scholar

8. Pitois, O., Fritz, C. and Vignes-Adler, M.: Hydrodynamic resistance of a single foam channel. Colloids Surfaces A Physicochemical & Engineering Aspects261 (1) (2005) 109114. 10.1016/j.colsurfa.2004.11.045Search in Google Scholar

9. Lucassen, J.: Anionic Surfactants: Physical Chemistry of Surfactant Action, ed. E. H.Lucassen-Reynders, Dekker, New York, 1981, pp. 11.Search in Google Scholar

10. Golemanov, K., Denkov, N. D., Tcholakova, S., Vethamuthu, M. and Lips, A.: Surfactant mixtures for control of bubble surface mobility in foam studies. Langmuir24 (18) (2008) 99569961.PMid:18698860; 10.1021/la8015386Search in Google Scholar PubMed

11. Petrov, J. G., Thomas Pfohl, A. and Möhwald,H.: Ellipsometric chain length dependence of fatty acid langmuir monolayers. a heads-and-tails model. J. Phys. Chem. B103 (17) (1999) 34173424. 10.1021/jp984393oSearch in Google Scholar

12. Weaire, D.: The rheology of foam. Current Opinion in Colloid & Interface Science13 (3) (2008) 171176. 10.1016/j.cocis.2007.11.004Search in Google Scholar

13. Weaire, D. and Drenckhan, W.: Structure and dynamics of confined foams: a review of recent progress. Advances in Colloid & Interface Science137 (1) (2008) 2026.PMid:17659249; 10.1016/j.cis.2007.04.001Search in Google Scholar

14. Hohler, R. and Cohenaddad, S.: Rheology of liquid foam. Journal of Physics Condensed Matter17 (41) (2005) R1041R1069 (29). 10.1088/0953-8984/17/41/R01Search in Google Scholar

15. Langevin, D.: Aqueous foams: a field of investigation at the frontier between chemistry and physics. Chemphyschem9 (4) (2008) 510522.PMid:18275064; 10.1002/cphc.200700675Search in Google Scholar

16. Bergeron, V.: Disjoining pressures and film stability of alkyltrimethylammonium bromide foam films. Langmuir13 (13) (1997) 34743482. 10.1021/la970004qSearch in Google Scholar

17. Vrij, A. and Overbeek, J. T. G.: Rupture of thin liquid films due to spontaneous fluctuations in thickness. J. Am. Chem. Soc.90 (12) (1968) 30743078. 10.1021/ja01014a015Search in Google Scholar

18. De Vries, A. J.: Foam stability, part iv: kinetics and activation energy of film rupture. Plant Physiology64 (1) (1979) 18. 10.1002/recl.19580770412Search in Google Scholar

19. Zinati, F. F., Farajzadeh, R. and Zitha, P. L. J.: Foam modeling in heterogeneous reservoirs using stochastic bubble population approach[C]//SPE Symposium on Improved Oil Recovery. Society of Petroleum Engineers, 2008. 10.2118/113358-MSSearch in Google Scholar

20. Kovscek, A. R., Patzek, T. W. and Radke, C. J.: A mechanistic population balance model for transient and steady-state foam flow in Boise sandstone [J]. Chemical Engineering Science50 (23) (1995) 37833799. 10.1016/0009–2509(95)00199-FSearch in Google Scholar

21. Zitha, P. L. J.: A new stochastic bubble population model for foam in porous media[C]//SPE/DOE Symposium on Improved Oil Recovery. Society of Petroleum Engineers, 2006.10.2118/98976-MSSearch in Google Scholar

22. Stenvot, C. and Langevin, D.: Study of viscoelasticity of soluble monolayers using analysis of propagation of excited capillary waves, Langmuir4 (1988) 1179118. 10.1021/la00083a022Search in Google Scholar

23. Ravera, F., Loglio, G. and Kovalchuk, V. I.: Interfacial dilational rheology by oscillating bubble/drop methods, Current Opinion in Colloid & Interface Science15 (2010) 217228. 10.1016/j.cocis.2010.04.001Search in Google Scholar

24. Hirasaki, G. J. and Lawson, J. B.: Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries. Society of Petroleum Engineers Journal25 (02) (1985) 176190. 10.2118/12129-PASearch in Google Scholar

25. Denkov, N. D., Subramanian, V., Gurovich, D. and Lips, A.: Wall slip and viscous dissipation in sheared foams: effect of surface mobility. Colloids & Surfaces A Physicochemical & Engineering Aspects263 (1–3) (2005) 129145. 10.1016/j.colsurfa.2005.02.038Search in Google Scholar

26. Golemanov, K., Denkov, N. D., Tcholakova, S., Vethamuthu, M. and Lips, A.: Surfactant mixtures for control of bubble surface mobility in foam studies. Langmuir24 (18) (2008) 99569961.PMid:18698860; 10.1021/la8015386Search in Google Scholar PubMed

27. Haab, R.: Aqueous foam slip and shear regimes determined by rheometry and multiple light scattering. Journal of Rheology52 (52) (2008) 1091. 10.1122/1.2952510Search in Google Scholar

28. Tcholakova, S., Denkov, N. D., Golemanov, K., Ananthapadmanabhan, K. P. and Lips, A.: Theoretical model of viscous friction inside steadily sheared foams and concentrated emulsions. Physical Review E Statistical Nonlinear & Soft Matter Physics78 (1Pt1) (2008) 902904.PMid:18763954; 10.1103/PhysRevE.78.011405Search in Google Scholar PubMed

Received: 2016-06-16
Accepted: 2017-02-08
Published Online: 2017-12-09
Published in Print: 2017-07-14

© 2017, Carl Hanser Publisher, Munich

Downloaded on 26.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110508/html
Scroll to top button