Abstract
Antioxidant activity of erodiol was examined at the M05-2X/6-311+G(d,p) level of theory in the gas and aqueous phases. The structure and energy of radicals and anions of the most stable erodiol rotamer were analyzed. To estimate antioxidant potential of erodiol, different molecular properties were examined: bond dissociation enthalpy, proton affinity together with electron transfer energy, and ionization potential followed by proton dissociation enthalpy. It was found that hydrogen atom transfer is the prevailing mechanism of erodiol behavior in gas; whereas single electron transfer followed by proton transfer and sequential proton loss electron transfer mechanisms represent the thermodynamically preferred reaction paths in water.
[1] Bartmess, J. E. (1994). Thermodynamics of the electron and the proton. The Journal of Physical Chemistry, 98, 6420–6424. DOI: 10.1021/j100076a029. http://dx.doi.org/10.1021/j100076a02910.1021/j100076a029Search in Google Scholar
[2] Bors, W., Heller, W., Michel, C., & Saran, M. (1990). Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Methods in Enzymology, 186, 343–355. DOI: 10.1016/0076-6879(90)86128-i. http://dx.doi.org/10.1016/0076-6879(90)86128-I10.1016/0076-6879(90)86128-ISearch in Google Scholar
[3] Cai, Y. Z., Sun, M., Xing, J., Luo, Q., & Corke, H. (2006). Structure-radical scavenging activity relationship of phenolic compounds from traditional Chinese medical plants. Life Sciences, 78, 2872–2888. DOI: 10.1016/j.lfs.2005.11.004. http://dx.doi.org/10.1016/j.lfs.2005.11.00410.1016/j.lfs.2005.11.004Search in Google Scholar
[4] Cao, G. H., Sofic, E., & Prior, R. L. (1997). Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radical Biology and Medicine, 22, 749–760. DOI: 10.1016/s0891-5849(96)00351-6. http://dx.doi.org/10.1016/S0891-5849(96)00351-610.1016/S0891-5849(96)00351-6Search in Google Scholar
[5] de Heer, M. I., Korth, H. G., & Mulder, P. (1999). Poly methoxy phenols in solution: O-H bond dissociation enthalpies, structures, and hydrogen bonding. The Journal of Organic Chemistry, 64, 6969–6975. DOI: 10.1021/jo9901485. http://dx.doi.org/10.1021/jo990148510.1021/jo9901485Search in Google Scholar
[6] Fecka, I., & Cisowski, W. (2005). Tannins and flavonoids from the Erodium cicutarium herb. Zeitschrift für Naturforschung Section B, 60, 555–560. 10.1515/znb-2005-0513Search in Google Scholar
[7] Foti, M. C., Daquino, C., & Geraci, C. (2004). Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH. radical in alcoholic solutions. The Journal of Organic Chemistry, 69, 2309–2314. DOI: 10.1021/jo035758q. http://dx.doi.org/10.1021/jo035758q10.1021/jo035758qSearch in Google Scholar PubMed
[8] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, A. D., Rabuck, K. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Baboul, A. G., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S., & Pople, J. A. (2009). Gaussian 09, Revision A1 [computer software]. Wallingford, CT, USA: Gaussian. Search in Google Scholar
[9] Glendening, E. D., Badenhoop, J, K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M., & Weinhold, F. (2001). NBO 5.0. [computer software]. Madison, WI, USA: Theoretical Chemistry Institute, University of Wisconsin. Search in Google Scholar
[10] Hertog, M. G. L., & Hollman, P. C. H. (1996). Potential health effects of the dietary flavonol quercetin. European Journal of Clinical Nutrition, 50, 63–71. Search in Google Scholar
[11] Hillenbrand, M., Zapp, J., & Becker, H. (2004). Depsides from the petals of Papaver rhoeas. Planta Medica, 70, 380–382. DOI: 10.1055/s-2004-818956. http://dx.doi.org/10.1055/s-2004-81895610.1055/s-2004-818956Search in Google Scholar PubMed
[12] Huynh, M. H. V., & Meyer, T. J. (2007). Proton-coupled electron transfer. Chemical Reviews, 107, 5004–5064. DOI: 10.1021/cr0500030. http://dx.doi.org/10.1021/cr050003010.1021/cr0500030Search in Google Scholar PubMed PubMed Central
[13] Klein, E., & Lukeš, V. (2006). DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of phenols antioxidant action. The Journal of Physical Chemistry A, 110, 12312–12320. DOI: 10.1021/jp063468i. http://dx.doi.org/10.1021/jp063468i10.1021/jp063468iSearch in Google Scholar PubMed
[14] Klein, E., Lukeš, V., & Iličin, M. (2007). DFT/B3LYP study of tocopherols and chromans antioxidant action energetics. Chemical Physics, 336, 51–57. DOI: 10.1016/j.chemphys.2007.05.007. http://dx.doi.org/10.1016/j.chemphys.2007.05.00710.1016/j.chemphys.2007.05.007Search in Google Scholar
[15] Kumar, S., & Müller, K. (1999). Lichen metabolites. 2. Antiproliferative and cytotoxic activity of gyrophoric, usnic, and diffractaic acid on human keratinocyte growth. Journal of Natural Products, 62, 821–823. DOI: 10.1021/np980378z. http://dx.doi.org/10.1021/np980378z10.1021/np980378zSearch in Google Scholar
[16] Kumar, S., & Müller, K. (2000). Depsides as non-redox inhibitors of leukotriene B4 biosynthesis and HaCaT cell growth, 2. Novel analogues of obtusatic acid. European Journal of Medicinal Chemistry, 35, 405–411. DOI: 10.1016/s0223-5234(00)00132-x. http://dx.doi.org/10.1016/S0223-5234(00)00132-X10.1016/S0223-5234(00)00132-XSearch in Google Scholar
[17] Leopoldini, M., Marino, T., Russo, N., & Toscano, M. (2004a). Density functional computations of the energetic and spectroscopic parameters of quercetin and its radicals in the gas phase and in solvent. Theoretical Chemistry Accounts, 111, 210–216. DOI: 10.1007/s00214-003-0544-1. http://dx.doi.org/10.1007/s00214-003-0544-110.1007/s00214-003-0544-1Search in Google Scholar
[18] Leopoldini, M., Pitarch, I. P., Russo, N., & Toscano, M. (2004b). Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. The Journal of Physical Chemistry A, 108, 92–96. DOI: 10.1021/jp035901j. http://dx.doi.org/10.1021/jp035901j10.1021/jp035901jSearch in Google Scholar
[19] Leopoldini, M., Marino, T., Russo, N., & Toscano, M. (2004c). Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. The Journal of Physical Chemistry A, 108, 4916–4922. DOI: 10.1021/jp037247d. http://dx.doi.org/10.1021/jp037247d10.1021/jp037247dSearch in Google Scholar
[20] Litwinienko, G., & Ingold, K. U. (2007). Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Accounts of Chemical Research, 40, 222–230. DOI: 10.1021/ar0682029. http://dx.doi.org/10.1021/ar068202910.1021/ar0682029Search in Google Scholar PubMed
[21] Lv, P. C., Xiao, Z. P., Fang, R. Q., Li, H. Q., Zhu, H. L., & Liu, C. H. (2009). Synthesis, characterization, and structure-activity relationship analysis of novel depsides as potential antibacterials. European Journal of Medicinal Chemistry, 44, 1779–1787. DOI: 10.1016/j.ejmech.2008.04.019. http://dx.doi.org/10.1016/j.ejmech.2008.04.01910.1016/j.ejmech.2008.04.019Search in Google Scholar PubMed
[22] Mandado, M., Graña, A. M., & Mosquera, R. A. (2004). AIM charge density study of simple natural phenolic antioxidants. Chemical Physics Letters, 400, 169–174. DOI: 10.1016/j.cplett.2004.10.097. http://dx.doi.org/10.1016/j.cplett.2004.10.09710.1016/j.cplett.2004.10.097Search in Google Scholar
[23] Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. The Journal of Physical Chemistry B, 113, 6378–6396. DOI: 10.1021/jp810292n. http://dx.doi.org/10.1021/jp810292n10.1021/jp810292nSearch in Google Scholar PubMed
[24] Marković, Z., Mentus, S. V., & Marković, J. M. D. (2009). Electrochemical and density functional theory study on the reactivity of fisetin and its radicals: Implications on in vitro antioxidant activity. The Journal of Physical Chemistry A, 113, 14170–14179. DOI: 10.1021/jp907071v. http://dx.doi.org/10.1021/jp907071v10.1021/jp907071vSearch in Google Scholar PubMed
[25] Marković, Z. S., & Manojlović, N. T. (2010). Analytical characterization of lichexanthone in lichen: HPLC, UV spectroscopic, and DFT analysis of lichexanthone extracted from Laurera benguelensis (Mull. Arg.) Zahlbr. Monatshefte für Chemie, 141, 945–952. DOI: 10.1007/s00706-010-0349-6. http://dx.doi.org/10.1007/s00706-010-0349-610.1007/s00706-010-0349-6Search in Google Scholar
[26] Marković, Z., Milenković, D., Đorović, J., Marković, J. M. D., Stepanić, V., Lučić, B., & Amić, D. (2012a). PM6 and DFT study of free radical scavenging activity of morin. Food Chemistry, 134, 1754–1760. DOI: 10.1016/j.foodchem.2012.03.124. http://dx.doi.org/10.1016/j.foodchem.2012.03.12410.1016/j.foodchem.2012.03.124Search in Google Scholar PubMed
[27] Marković, Z., Milenković, D., Đorović, J., Marković, J. M. D., Stepanić, V., Lučić, B., & Amić, D. (2012b). Free radical scavenging activity of morin 2′-O − phenoxide anion. Food Chemistry, 135, 2070–2077. DOI: 10.1016/j.foodchem.2012.05.119. http://dx.doi.org/10.1016/j.foodchem.2012.05.11910.1016/j.foodchem.2012.05.119Search in Google Scholar PubMed
[28] McLean, A. D., & Chandler, G. S. (1980). Contracted Gaussianbasis sets for molecular calculations. 1. Second row atoms, Z = 11–18. Journal of Chemical Physics, 72, 5639–5648. DOI: 10.1063/1.438980. http://dx.doi.org/10.1063/1.43898010.1063/1.438980Search in Google Scholar
[29] McQuarrie, D. A. (2000). Statistical mechanics. Sausalito, CA, USA: University Science Books. Search in Google Scholar
[30] Merrick, J. P., Moran, D., & Radom, L. (2007). An evaluation of harmonic vibrational frequency scale factors. The Journal of Physical Chemistry A, 111, 11683–11700. DOI: 10.1021/jp073974n. http://dx.doi.org/10.1021/jp073974n10.1021/jp073974nSearch in Google Scholar PubMed
[31] Meyer, T. J., Huynh, M. H. V., & Thorp, H. H. (2007). The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angewandte Chemie International Edition, 46, 5284–5304. DOI: 10.1002/anie.200600917. http://dx.doi.org/10.1002/anie.20060091710.1002/anie.200600917Search in Google Scholar PubMed
[32] Moa, M. J. G., Mandado, M., & Mosquera, R. A. (2006). QTAIM charge density study of natural cinnamic acids. Chemical Physics Letters, 424, 17–22. DOI: 10.1016/j.cplett.2006.04.034. http://dx.doi.org/10.1016/j.cplett.2006.04.03410.1016/j.cplett.2006.04.034Search in Google Scholar
[33] Musialik, M., & Litwinienko, G. (2005). Scavenging of DPPH. radicals by vitamin E is accelerated by its partial ionization: The role of sequential proton loss electron transfer. Organic Letters, 7, 4951–4954. DOI: 10.1021/ol051962j. http://dx.doi.org/10.1021/ol051962j10.1021/ol051962jSearch in Google Scholar PubMed
[34] Neamati, N., Hong, H. X., Mazumder, A., Wang, S. M., Sunder, S., Nicklaus, M. C., Milne, G. W. A., Proksa, B., & Pommier, Y. (1997). Depsides and depsidones as inhibitors of HIV-1 integrase: Discovery of novel inhibitors through 3D database searching. Journal of Medicinal Chemistry, 40, 942–951. DOI: 10.1021/jm960759e. http://dx.doi.org/10.1021/jm960759e10.1021/jm960759eSearch in Google Scholar PubMed
[35] Nielsen, J., Nielsen, P. H., & Frisvad, J. C. (1999). Fungal depside, guisinol, from a marine derived strain of Emericella unguis. Phytochemistry, 50, 263–265. DOI: 10.1016/s0031-9422(98)00517-2. http://dx.doi.org/10.1016/S0031-9422(98)00517-210.1016/S0031-9422(98)00517-2Search in Google Scholar
[36] Ono, M., Masuoka, C., Koto, M., Tateishi, M., Komatsu, H., Kobayashi, H., Igoshi, K., Ito, Y., Okawa, M., & Nohara, T. (2002). Antioxidant ortho-benzoyloxyphenyl acetic acid ester, vaccihein A, from the fruit of rabbiteye blueberry (Vaccinium ashei). Chemical and Pharmaceutical Bulletin, 50, 1416–1417. DOI: 10.1248/cpb.50.1416. http://dx.doi.org/10.1248/cpb.50.141610.1248/cpb.50.1416Search in Google Scholar
[37] Proksa, B., Adamcová, J., Šturdová, M., & Fuska, J. (1994). Metabolites of Pseudevernia furfuracea (L.) Zopf. and their inhibition potential of proteolytic enzymes. Pharmazie, 49, 282–283. Search in Google Scholar
[38] Raghavachari, K., Binkley, J. S., Seeger, R., & Pople, J. A. (1980). Self-consistent molecular orbital methods. XX. Basis set for correlated wave-functions. Journal of Chemical Physics, 72, 650–654. DOI: 10.1063/1.438955. http://dx.doi.org/10.1063/1.43895510.1063/1.438955Search in Google Scholar
[39] Reynertson, K. A., Wallace, A. M., Adachi, S., Gil, R. R., Yang, H., Basile, M. J., D’Armiento, J., Weinstein, I. B., & Kennelly, E. J. (2006). Bioactive depsides and anthocyanins from Jaboticaba (Myrciaria cauliflora). Journal of Natural Products, 69, 1228–1230. DOI: 10.1021/np0600999. http://dx.doi.org/10.1021/np060099910.1021/np0600999Search in Google Scholar
[40] Rice-Evans, C. A., & Miller, N. J. (1996). Antioxidant activities of flavonoids as bioactive components of food. Biochemical Society Transactions, 24, 790–795. DOI: 10.1042/bst0240790. 10.1042/bst0240790Search in Google Scholar
[41] Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20, 933–956. DOI: 10.1016/0891-5849(95)02227-9. http://dx.doi.org/10.1016/0891-5849(95)02227-910.1016/0891-5849(95)02227-9Search in Google Scholar
[42] Rimarčík, J., Lukeš, V., Klein, E., & Ilčin, M. (2010). Study of the solvent effect on the enthalpies of homolytic and heterolytic N-H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. Journal of Molecular Structure: THEOCHEM, 952, 25–30. DOI: 10.1016/j.theochem.2010.04.002. http://dx.doi.org/10.1016/j.theochem.2010.04.00210.1016/j.theochem.2010.04.002Search in Google Scholar
[43] Trouillas, P., Marsal, P., Siri, D., Lazzaroni, R., & Duroux, J. L. (2006). A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: The specificity of the 3-OH site. Food Chemistry, 97, 679–688. DOI: 10.1016/j.foodchem.2005.05.042. http://dx.doi.org/10.1016/j.foodchem.2005.05.04210.1016/j.foodchem.2005.05.042Search in Google Scholar
[44] Wayner, D. D. M., Lusztyk, E., & Ingold, K. U. (1996). Application of photoacoustic calorimetry to the measurement of the O-H bond strength in vitamin E (α- and δ-tocopherol) and related phenolic antioxidants. The Journal of Organic Chemistry, 61, 6430–6433. DOI: 10.1021/jo952167u. http://dx.doi.org/10.1021/jo952167u10.1021/jo952167uSearch in Google Scholar PubMed
[45] Weinhold, F., & Landis, C. R. (2005). Valency and bonding: A natural bond orbital donor-acceptor perspective. New York, NY, USA: Cambridge Academic Press. http://dx.doi.org/10.1017/CBO978051161456910.1017/CBO9780511614569Search in Google Scholar
[46] Wright, J. S., Johnson, E. R., & DiLabio, G. A. (2001). Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants. Journal of the American Chemical Society, 123, 1173–1183. DOI: 10.1021/ja002455u. http://dx.doi.org/10.1021/ja002455u10.1021/ja002455uSearch in Google Scholar PubMed
[47] Yamamoto, Y., Miura, Y., Kinoshita, Y., Higuchi, M., Yamada, Y., Murakami, A., Ohigashi, H., & Koshimizu, K. (1995). Screening of tissue cultures and thalli of lichens and some of their active constituents for inhibition of tumor promoter-induced Epstein-Barr virus activation. Chemical and Pharmaceutical Bulletin, 43, 1388–1390. DOI: 10.1248/cpb.43.1388. http://dx.doi.org/10.1248/cpb.43.138810.1248/cpb.43.1388Search in Google Scholar PubMed
[48] Zhao, Y., Schultz, N. E., & Truhlar, D. G. (2006). Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Theory and Computation, 2, 364–382. DOI: 10.1021/ct0502763. http://dx.doi.org/10.1021/ct050276310.1021/ct0502763Search in Google Scholar PubMed
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- A comparative study on direct production of ethyl levulinate from glucose in ethanol media catalysed by different acid catalysts
- Model-based sensitivity analysis of a fluidised-bed bioreactor for mercury uptake by immobilised Pseudomonas putida cells
- Variability of total and mobile element contents in ash derived from biomass combustion
- Pigmentary properties of rutile TiO2 modified with cerium, phosphorus, potassium, and aluminium
- Efficient synthesis of carbon nanotubes with improved surface area by low-temperature solvothermal route from dichlorobenzene
- Surface modification of quantum dots and magnetic nanoparticles with PEG-conjugated chitosan derivatives for biological applications
- Comparative study of particle size analysis of hydroxyapatite-based nanomaterials
- Synthesis of cinnamic acid-derived 4,5-dihydrooxazoles
- Thermodynamic properties of dimethyl phthalate + vinyl acetate, diethyl phthalate + vinyl acetate or bromocyclohexane, and dibutyl phthalate + vinyl acetate or 1,2-dichlorobenzene at T = 298.15–308.15 K
- Temperature-dependent volumetric and viscometric properties of amino acids in aqueous solutions of an antibiotic drug
- DFT study of free radical scavenging activity of erodiol
- QSAR study of amidino bis-benzimidazole derivatives as potent anti-malarial agents against Plasmodium falciparum
- Alternative two-step route to khellactone analogues using silica tungstic acid and sodium hydrogen phosphate
Articles in the same Issue
- A comparative study on direct production of ethyl levulinate from glucose in ethanol media catalysed by different acid catalysts
- Model-based sensitivity analysis of a fluidised-bed bioreactor for mercury uptake by immobilised Pseudomonas putida cells
- Variability of total and mobile element contents in ash derived from biomass combustion
- Pigmentary properties of rutile TiO2 modified with cerium, phosphorus, potassium, and aluminium
- Efficient synthesis of carbon nanotubes with improved surface area by low-temperature solvothermal route from dichlorobenzene
- Surface modification of quantum dots and magnetic nanoparticles with PEG-conjugated chitosan derivatives for biological applications
- Comparative study of particle size analysis of hydroxyapatite-based nanomaterials
- Synthesis of cinnamic acid-derived 4,5-dihydrooxazoles
- Thermodynamic properties of dimethyl phthalate + vinyl acetate, diethyl phthalate + vinyl acetate or bromocyclohexane, and dibutyl phthalate + vinyl acetate or 1,2-dichlorobenzene at T = 298.15–308.15 K
- Temperature-dependent volumetric and viscometric properties of amino acids in aqueous solutions of an antibiotic drug
- DFT study of free radical scavenging activity of erodiol
- QSAR study of amidino bis-benzimidazole derivatives as potent anti-malarial agents against Plasmodium falciparum
- Alternative two-step route to khellactone analogues using silica tungstic acid and sodium hydrogen phosphate