Abstract
The excited state properties of Pt(II) complexes are strongly influenced by their microenvironment and by intermolecular interactions. In this work, we investigated the photoluminescence of six Pt(II) complexes adsorbed onto a layered nanoclay, namely Laponite® (LAP). The excellent water dispersibility and gel-forming nature of the LAP was exploited to achieve a class of versatile materials. In particular, we report on the comparative photophysics of the dry powders and the hydrogels. Steady-state and time-resolved photoluminescence spectroscopy were used to assess the role of structural features at molecular level on the interaction between the nanodiscs, which in turn affects the intermolecular coupling of the coordination compounds in the excited state.
Dedicated to: Professor Robert Glaum on the occasion of his 60th birthday.
Acknowledgments
SCG gratefully acknowledges Westfälische Wilhelms-Universität Münster for a doctoral fellowship. CAS would like to acknowledge the Cluster of Excellence Cells in Motion (DFG EXC 1003) for financial support.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This work was financially supported by the DFG.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Choy, W. C. H., Chan, W. K., Yuan, Y. Adv. Mater. 2014, 26, 5368–5399; https://doi.org/10.1002/adma.201306133.Search in Google Scholar
2. Kalinowski, J., Fattori, V., Cocchi, M., Williams, J. A. G. Coord. Chem. Rev. 2011, 255, 2401–2425; https://doi.org/10.1016/j.ccr.2011.01.049.Search in Google Scholar
3. Prier, C. K., Rankic, D. A., MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322–5363; https://doi.org/10.1021/cr300503r.Search in Google Scholar
4. Glaser, F., Wenger, O. S. Coord. Chem. Rev. 2020, 405, 213129; https://doi.org/10.1016/j.ccr.2019.213129.Search in Google Scholar
5. Zhao, Q., Huang, H., Li, F. Chem. Soc. Rev. 2011, 40, 2508–2524; https://doi.org/10.1039/c0cs00114g.Search in Google Scholar
6. Mydlak, M., Mauro, M., Polo, F., Felicetti, M., Leonhardt, J., Diener, G., De Cola, L., Strassert, C. A. Chem. Mater. 2011, 23, 3659–3667; https://doi.org/10.1021/cm2010902.Search in Google Scholar
7. Yam, V. W. W., Law, A. S. Y. Coord. Chem. Rev. 2020, 414, 213298; https://doi.org/10.1016/j.ccr.2020.213298.Search in Google Scholar
8. Aliprandi, A., Mauro, M., De Cola, L. Nat. Chem. 2016, 8, 10–15; https://doi.org/10.1038/nchem.2383.Search in Google Scholar
9. Mauro, M., Aliprandi, A., Septiadi, D., Kehr, N. S., De Cola, L. Chem. Soc. Rev. 2014, 43, 4144–4166; https://doi.org/10.1039/c3cs60453e.Search in Google Scholar
10. Sanning, J., Stegemann, L., Ewen, P. R., Schwermann, C., Daniliuc, C. G., Zhang, D., Lin, N., Duan, L., Wegner, D., Doltsinis, N. L., Strassert, C. A. J. Mater. Chem. C 2016, 4, 2560–2565; https://doi.org/10.1039/c6tc00093b.Search in Google Scholar
11. Sanning, J., Ewen, P. R., Stegemann, L., Schmidt, J., Daniliuc, C. G., Koch, T., Doltsinis, N. L., Wegner, D., Strassert, C. A. Angew. Chem. Int. Ed. 2015, 54, 786–791; https://doi.org/10.1002/anie.201407439.Search in Google Scholar
12. Tomás, H., Alves, C. S., Rodrigues, J. Nanomedicine 2018, 14, 2407–2420; https://doi.org/10.1016/j.nano.2017.04.016.Search in Google Scholar
13. Bertuzzi, D. L., Braga, C. B., Ornelas, C., Becher, T. B., Ramos, M. D., Hassan, A., Crespilho, F. N. Soft Matter 2018, 15, 1278–1289. https://doi.org/10.1039/C8SM01965G.Search in Google Scholar
14. Staniford, M. C., Lezhnina, M. M., Grüner, M., Stegemann, L., Kuczius, R., Bleicher, V., Strassert, C. A., Kynast, U. H. Chem. Commun. 2015, 51, 13534–13537; https://doi.org/10.1039/c5cc05352h.Search in Google Scholar
15. Grüner, M., Tuchscherr, L., Löffler, B., Gonnissen, D., Riehemann, K., Staniford, M. C., Kynast, U., Strassert, C. A. ACS Appl. Mater. Interfaces 2015, 7, 20965–20971; https://doi.org/10.1021/acsami.5b06742.Search in Google Scholar
16. Grüner, M. C., Zanoni, K. P. S., Borgognoni, C. F., Melo, C. C., Zucolotto, V., de Camargo, A. S. S. ACS Appl. Mater. Interfaces 2018, 10, 26830–26834; https://doi.org/10.1021/acsami.8b10842.Search in Google Scholar
17. Kuila, S., Rao, K. V., Garain, S., Samanta, P. K., Das, S., Pati, S. K., Eswaramoorthy, M., George, S. J. Angew. Chem. Int. Ed. 2018, 57, 17115–17119; https://doi.org/10.1002/anie.201810823.Search in Google Scholar
18. Kuila, S., Garain, S., Eswaramoorthy, M., George, S. J. Mater. Res. Express 2019, 6; https://doi.org/10.1088/2053-1591/ab4fa0.Search in Google Scholar
19. Galstyan, A., Naziruddin, A. R., Cebrián, C., Iordache, A., Daniliuc, C. G., De Cola, L., Strassert, C. A. Eur. J. Inorg. Chem. 2015, 36, 5822–5831; https://doi.org/10.1002/ejic.201500949.Search in Google Scholar
20. Felbeck, T., Behnke, T., Hoffmann, K., Grabolle, M., Lezhnina, M. M., Kynast, U. H., Resch-Genger, U. Langmuir 2013, 29, 11489–11497; https://doi.org/10.1021/la402165q.Search in Google Scholar
21. Sillen, A., Engelborghs, Y. Photochem. Photobiol. 1998, 67, 475–486; https://doi.org/10.1562/0031-8655(1998)067<0475:tcuofp>2.3.co;2.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2020-0169).
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- Robert Glaum zum 60. Geburtstag gewidmet
- Research Articles
- Structural transition and antiferromagnetic ordering in the solid solution CePd1−xAuxAl (x = 0.1–0.9)
- Ternary plumbides ATPb2 (A = Ca, Sr, Ba, Eu; T = Rh, Pd, Pt) with distorted, lonsdaleite-related substructures of tetrahedrally connected lead atoms
- Intergrowth of niobium tungsten oxides of the tetragonal tungsten bronze type
- FeBiS2Cl – A new iron-containing member of the MPnQ2X family
- Thallium diphosphates
- Behavior of beryllium halides and triflate in acetonitrile solutions
- Hydroflux syntheses and crystal structures of hydrogarnets Ba3[RE(OH)6]2 (RE = Sc, Y, Ho–Lu)
- Three of a kind? The non-isotypic triple CsCe[P2Se6], CsSm[P2Se6] and CsEr[P2Se6]
- The crystal structure of ZrCr2D≈4 at 50 K ≤ T ≤ 200 K
- High-pressure synthesis and crystal structure of HP-Al2B3O7(OH)
- New layered supertetrahedral compounds T2-MSiAs2, T3-MGaSiAs3 and polytypic T4-M4Ga5SiAs9 (M = Sr, Eu)
- Comparative photophysical study of Pt(II) complex-nanoclay hybrid materials as dry powders and hydrogels
- Carbon subsulfide C3S2 – synthesis by flash vacuum pyrolysis and crystal structure determination
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- Robert Glaum zum 60. Geburtstag gewidmet
- Research Articles
- Structural transition and antiferromagnetic ordering in the solid solution CePd1−xAuxAl (x = 0.1–0.9)
- Ternary plumbides ATPb2 (A = Ca, Sr, Ba, Eu; T = Rh, Pd, Pt) with distorted, lonsdaleite-related substructures of tetrahedrally connected lead atoms
- Intergrowth of niobium tungsten oxides of the tetragonal tungsten bronze type
- FeBiS2Cl – A new iron-containing member of the MPnQ2X family
- Thallium diphosphates
- Behavior of beryllium halides and triflate in acetonitrile solutions
- Hydroflux syntheses and crystal structures of hydrogarnets Ba3[RE(OH)6]2 (RE = Sc, Y, Ho–Lu)
- Three of a kind? The non-isotypic triple CsCe[P2Se6], CsSm[P2Se6] and CsEr[P2Se6]
- The crystal structure of ZrCr2D≈4 at 50 K ≤ T ≤ 200 K
- High-pressure synthesis and crystal structure of HP-Al2B3O7(OH)
- New layered supertetrahedral compounds T2-MSiAs2, T3-MGaSiAs3 and polytypic T4-M4Ga5SiAs9 (M = Sr, Eu)
- Comparative photophysical study of Pt(II) complex-nanoclay hybrid materials as dry powders and hydrogels
- Carbon subsulfide C3S2 – synthesis by flash vacuum pyrolysis and crystal structure determination