Abstract
The monoclinic α-polymorph of (VIVO)(PO3)2 is obtained reproducibly by reaction of V2O5 and H3PO4 (85%) (Au crucible, 380 °C, 4 d). Its crystal structure was refined from X-ray single-crystal data [C2/c, Z = 4, a = 15.1038(7) Å, b = 4.193(2) Å, c = 9.573(9) Å, β = 126.45(3), R1 = 0.052, wR2 = 0.189 for 976 unique reflections with Fo > 4σ(Fo), 48 variables]. A single-phase powder of the β-polymorph is obtained by the reaction of V2O5, H3PO4 (85%) and oxalic acid, evaporating the mixture, and subsequent annealing (porcelain crucible, 800 °C in air, 2 d). Single crystals of β-(VIVO)(PO3)2 were grown in a sealed silica ampoule with chlorine as mineralizer. The crystal structure of the orthorhombic (pseudo-tetragonal) β-polymorph was refined from X-ray single-crystal data [pseudo-merohedral twin, Fdd2, Z = 8, a = 15.536(2) Å, b = 15.586(2) Å, c = 4.2611(5) Å, R1 = 0.032, wR2 = 0.068 for 1072 unique reflections with Fo > 4σ(Fo), 50 variables]. Earlier reports on a tetragonal polymorph with unusual geometric structure of the [(V≡O)O5] polyhedron are corrected.
Dedicated to Professor Dr. Ulrich Müller on the occasion of his 80th birthday.
Acknowledgments
We thank Dr. Gregor Schnakenburg and Charlotte Rödde for the collection of the single crystal X-ray data and Dominik Offermanns (all University of Bonn) for the XRPD data of α- and β-VO(PO3)2.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Murashova, E. V., Chudinova, N. N. Kristallografiya 1994, 39, 145.Search in Google Scholar
2. Krasnikov, V. V., Konstant, Z. A. Izv. Akad. Nauk. SSSR - Neorganicheskiye Mater. 1979, 15, 2164.Search in Google Scholar
3. Bärnighausen, H. Match 1980, 9, 139.Search in Google Scholar
4. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen. Anwendungen der kristallographischen Gruppentheorie in der Kristallchemie; Vieweg + Teubner: Wiesbaden, 2012.10.1007/978-3-8348-8342-1Search in Google Scholar
5. Sheldrick, G. M. SHELX-97 (Includes SHELXS97, SHELXL97, CIFTAB) Programs for Crystal Structure Analysis (Release 97-2); Universität Göttingen: Göttingen, Germany, 1998.Search in Google Scholar
6. Achary, S. N., Patwe, S. J., Tyagi, A. K. J. Alloys Compd. 2008, 461, 474. https://doi.org/10.1016/j.jallcom.2007.07.011.Search in Google Scholar
7. Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A., Wondratschek, H. Z. Kristallogr. Cryst. Mater. 2006, 221, 15–27. https://doi.org/10.1524/zkri.2006.221.1.15.Search in Google Scholar
8. Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. M., Wondratschek, H. Acta Crystallogr. 2006, A62, 115; https://doi.org/10.1107/s0108767305040286.Search in Google Scholar
9. Müller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R., Sawaya, M. R. Crystal Structure Refinement – A Crystallographer’s Guide to SHELXL; Intl. Union of Crystallogr., Oxford Univ. Press: Oxford, 2006.10.1093/acprof:oso/9780198570769.001.0001Search in Google Scholar
10. Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837; https://doi.org/10.1107/s0021889899006020.Search in Google Scholar
11. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74. https://doi.org/10.1107/S0021889877012898.Search in Google Scholar
12. Durif, A. Crystal Chemistry of Condensed Phosphates; Plenum Press: New York, 1995.10.1007/978-1-4757-9894-4Search in Google Scholar
13. Glaum, R. Neue Untersuchungen an wasserfreien Phosphaten der Übergangsmetalle. Thesis of Habilitation, University of Gießen: Gießen, Germany, 1999. https://geb.uni-giessen.de/geb/volltexte/1999/124/ (digital version; in German).Search in Google Scholar
14. Daidouh, A., Veiga, M. L., Pico, C. Solid State Ionics 1998, 106, 103–112; https://doi.org/10.1016/s0167-2738(97)00440-2.Search in Google Scholar
15. Wadewitz, C., Müller Buschbaum, H., Z. Naturforsch. 1996, 51, 929–933; https://doi.org/10.1515/znb-1996-0705.Search in Google Scholar
16. Putz, H., Brandenburg, K. Diamond – Crystal and Molecular Structure Visualization; Crystal Impact: Bonn, Germany, 2006; pp. 1979–2020.Search in Google Scholar
17. Putz, H. Match!, Crystal Impact: Bonn, 2015.Search in Google Scholar
18. Meyer, G., Soose, J. SOS – Program for Determination Of Lattice Parameters; University of Gießen: Gießen, Germany, 1980.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2020-0037).
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Original papers
- Ulrich Müller zum 80. Geburtstag gewidmet
- Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]
- The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres
- Beryllium triflates: synthesis and structure of BeL2(OTf)2 (L=H2O, THF, nBu2O)
- Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates
- New mixed-valent alkali chain sulfido ferrates A1+x[FeS2] (A = K, Rb, Cs; x = 0.333–0.787)
- Structure solution of incommensurately modulated La6MnSb15
- Polymorphs of VO(PO3)2: synthesis and crystal structure refinement revisited
- On tungstates of divalent cations (III) – Pb5O2[WO6]
- Hydrogen order in hydrides of Laves phases
- High-pressure synthesis of SmGe3
- The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)
- Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes
- Elucidating structure–property relationships in imidazolium-based halide ionic liquids: crystal structures and thermal behavior
- Syntheses and crystal structures of the manganese hydroxide halides Mn5(OH)6Cl4, Mn5(OH)7I3, and Mn7(OH)10I4
- Site-preferential copper substitution for silicon leads to Cu-chains in the new ternary silicide Ir4−xCuSi2
- Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide
Articles in the same Issue
- Frontmatter
- In this issue
- Original papers
- Ulrich Müller zum 80. Geburtstag gewidmet
- Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]
- The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres
- Beryllium triflates: synthesis and structure of BeL2(OTf)2 (L=H2O, THF, nBu2O)
- Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates
- New mixed-valent alkali chain sulfido ferrates A1+x[FeS2] (A = K, Rb, Cs; x = 0.333–0.787)
- Structure solution of incommensurately modulated La6MnSb15
- Polymorphs of VO(PO3)2: synthesis and crystal structure refinement revisited
- On tungstates of divalent cations (III) – Pb5O2[WO6]
- Hydrogen order in hydrides of Laves phases
- High-pressure synthesis of SmGe3
- The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)
- Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes
- Elucidating structure–property relationships in imidazolium-based halide ionic liquids: crystal structures and thermal behavior
- Syntheses and crystal structures of the manganese hydroxide halides Mn5(OH)6Cl4, Mn5(OH)7I3, and Mn7(OH)10I4
- Site-preferential copper substitution for silicon leads to Cu-chains in the new ternary silicide Ir4−xCuSi2
- Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide