Home Physical Sciences Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates
Article
Licensed
Unlicensed Requires Authentication

Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates

  • Natalie Dehnhardt , Chantsalmaa Berthold , Kevin Dollberg , Frank Tambornino and Johanna Heine EMAIL logo
Published/Copyright: April 22, 2020

Abstract

Cu(I) and Ag(I) iodidometalates have been investigated for both their rich structural chemistry, as well as for useful properties like luminescence. Here, we present the synthesis and crystal structure of (BzA)[MI2] · 0.5 H2O (BzA = benzylammonium; M=Cu (1), Ag (2)). The two compounds are isostructural and show a previously unknown layered anion motif that can be described as a 44 net constructed via corner-sharing of M2I6 subunits, built from two edge-sharing MI4 tetrahedra.


Dedicated to: Prof. Ulrich Müller on the occasion of his 80th birthday.


References

[1] S. Jagner, G. Helgesson, On the coordination number of the metal in crystalline halogenocuprates (I) and halogenoargentates (I). Adv. Inorg. Chem.1991, 37, 1.10.1016/S0898-8838(08)60004-5Search in Google Scholar

[2] R. Peng, M. Li, D. Li, Copper (I) halides: a versatile family in coordination chemistry and crystal engineering. Coord. Chem. Rev.2010, 254, 1.10.1016/j.ccr.2009.10.003Search in Google Scholar

[3] T.-L. Yu, Y.-M. Guo, G.-X. Wu, X.-F. Yang, M. Xue, Y.-L. Fu, M.-S. Wang, Recent progress of d10 iodoargentate (I)/iodocuprate (I) hybrids: Structural diversity, directed synthesis, and photochromic/thermochromic properties. Coord. Chem. Rev.2019, 397, 91.10.1016/j.ccr.2019.06.006Search in Google Scholar

[4] P. Pyykkö, Strong closed-shell interactions in inorganic chemistry. Chem. Rev.1997, 97, 597.10.1021/cr940396vSearch in Google Scholar PubMed

[5] H. Hartl, F. Mahdjour-Hassan-Abadi, [Cu5I7]2− – an isopolyanion with cyclic face-to-face linking of CuI4 tetrahedra. Angew. Chem. Int. Ed. Engl.1984, 23, 378.10.1002/anie.198403781Search in Google Scholar

[6] N. P. Rath, E. M. Holt, Synthesis and structural characterization of CuI2. J. Chem. Soc. Chem. Commun.1986, 311.10.1039/c39860000311Search in Google Scholar

[7] G. A. Bowmaker, A. Camus, B. W. Skelton, A. H. White, Group 11 metal (I) complexes with low co-ordination numbers: the crystal structures of [PPh3Me]2[CuBr3], [PPh3Me]2[CuBr2]Br, and [PPh3Me]2[AgI3]. J. Chem. Soc., Dalton Trans.1990, 727.10.1039/dt9900000727Search in Google Scholar

[8] H. Hartl, J. Fuchs, [Cu36I56]20− – a novel polyanion in the compound (pyH)2[Cu3I5]. Angew. Chem. Int. Ed.1986, 25, 569.10.1002/anie.198605691Search in Google Scholar

[9] Y. Shen, J. Lu, C. Tang, W. Fang, Y. Zhang, D. Jia, Polymeric templates and solvent effects: syntheses and properties of polymeric iodoargentates containing solvated [Mn(4,4′-bpy)]2+ cations. RSC Adv.2014, 4, 39596.10.1039/C4RA08121HSearch in Google Scholar

[10] S.-L. Li, X.-M. Zhang, Cu3I7 trimer and Cu4I8 tetramer based cuprous iodide polymorphs for efficient photocatalysis and luminescent sensing: unveiling possible hierarchical assembly mechanism. Inorg. Chem.2014, 53, 8376.10.1021/ic500822wSearch in Google Scholar PubMed

[11] R.-C. Zhang, J.-J. Wang, B.-Q. Yuan, J.-C. Zhang, L. Zhou, H.-B. Wang, D.-J. Zhang, Y.-L. An, Syntheses and characterization of chiral zeolitic silver halides based on 3-rings. Inorg. Chem.2016, 55, 11593.10.1021/acs.inorgchem.6b02121Search in Google Scholar

[12] C. Hasselgren Arnby, S. Jagner, I. Dance, Questions for crystal engineering of halocuprate complexes: concepts for a difficult system. CrystEngComm2004, 6, 257.10.1039/b408793cSearch in Google Scholar

[13] A. M. Wheaton, M. E. Streep, C. M. Ohlhaver, A. D. Nicholas, F. H. Barnes, H. H. Patterson, R. D. Pike, Alkyl pyridinium iodocuprate (I) clusters: structural types and charge transfer behavior. ACS Omega2018, 3, 15281.10.1021/acsomega.8b01986Search in Google Scholar

[14] C. Hasselgren, G. Stenhagen, L. Öhrström, S. Jagner, On tuning the copper (I) coordination number in halocuprate (I) anions: new insights into cation control. Inorg. Chim. Acta1999, 292, 266.10.1016/S0020-1693(99)00202-9Search in Google Scholar

[15] B. Scott, R. D. Willett, Structure of the mixed-valence salt bis (N,N′-dibenzyl-4,4′-bipyridinium) aquanonachlorotricuprate (2II, I). Acta Cryst.1991, C47, 1389.10.1107/S0108270191000124Search in Google Scholar

[16] R. D. Willett, G. Pon, C. Nagy, Crystal chemistry of the 4,4′-Dimethyl-2,2′bipyridine/copper bromide system. Inorg. Chem.2001, 40, 4342.10.1021/ic010229vSearch in Google Scholar PubMed

[17] G. A. Bowmaker, P. D. W. Boyd, C. E. F. Rickard, M. L. Scudder, I. G. Dance, The [Cu8Br15]6− ion, a crystal-stabilized high-symmetry mixed-valence copper complex with a linear halogen bridge. Inorg. Chem.1999, 38, 5476.10.1021/ic990754iSearch in Google Scholar PubMed

[18] G. A. Bowmaker, A. Camus, Peter C. Healy, B. W. Skelton, A. H. White, Structural, vibrational and solid-state NMR studies of the halogenocuprate (I) complexes [(PPh3)2CuI2] and [(PPh3)CuI3Cu(PPh3)]. Inorg. Chem.1989, 28, 3883.10.1021/ic00319a025Search in Google Scholar

[19] P. C. Ford, E. Cariati, J. Bourassa, Photoluminescence properties of multinuclear copper (I) compounds. Chem. Rev.1999, 99, 3625.10.1021/cr960109iSearch in Google Scholar PubMed

[20] Y. Kang, F. Wang, J. Zhang, X. Bu, Luminescent MTN-type cluster–organic framework with 2.6 nm cages. J. Am. Chem. Soc.2012, 134, 17881.10.1021/ja308801nSearch in Google Scholar PubMed

[21] W. Liu, Y. Fang, J. Li, Copper iodide based hybrid phosphors for energy-efficient general lighting technologies. Adv. Funct. Mater.2018, 28, 1705593.10.1002/adfm.201705593Search in Google Scholar

[22] J.-J. Shen, X.-X. Li, T.-L. Yu, F. Wang, P.-F. Hao, Y.-L. Fu, Ultrasensitive photochromic iodocuprate (I) hybrid. Inorg. Chem.2016, 55, 8271.10.1021/acs.inorgchem.6b01599Search in Google Scholar PubMed

[23] R. D. Willett, Structures of the antiferrodistortive layer perovskites bis(phenethylammonium) tetrahalocuprate(II), halo=Cl, Br. Acta Cryst.1990, C46, 565.10.1107/S0108270189007535Search in Google Scholar

[24] A. O. Polyakov, A. H. Arkenbout, J. Baas, G. R. Blake, A. Meetsma, A. Caretta, P. H. M. van Loosdrecht, T. T. M. Palstra, Coexisting ferromagnetic and ferroelectric order in a CuCl4-based organic–inorganic hybrid. Chem. Mater.2012, 24, 133.10.1021/cm2023696Search in Google Scholar

[25] S. Löw, J. Becker, C. Würtele, A. Miska, C. Kleeberg, U. Behrens, O. Walter, S. Schindler, Reactions of copper (II) chloride in solution: facile formation of tetranuclear copper clusters and other complexes that are relevant in catalytic redox processes. Chem. Eur. J.2013, 19, 5342.10.1002/chem.201203848Search in Google Scholar PubMed

[26] C. Wölper, M. D. Polo Bastardés, I. Dix, D. Kratzert, P. G. Jones, Einfaches system, vielfältige Strukturen: Eine Neuuntersuchung der (Amin)halogenidosilber(I)-Komplexe. Z. Naturforsch.2010, 65b, 647.10.1515/znb-2010-0601Search in Google Scholar

[27] G. M. Sheldrick, A short history of SHELX. Acta Cryst.2008, A64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed

[28] G. M. Sheldrick, SHELXT – integrated space-group and crystal-structure determination. Acta Cryst.2015, A71, 3.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

[29] G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Cryst.2015, C71, 3.10.1107/S2053229614024218Search in Google Scholar

[30] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr.2009, 42, 339.10.1107/S0021889808042726Search in Google Scholar

[31] K. Brandenburg, Diamond. Crystal Impact GbR, Bonn, Germany, 2005.Search in Google Scholar

[32] H. Hartl, I. Brüdgam, F. Mahdjour-Hassan-Abadi, Synthese und Strukturuntersuchungen von Iodocupraten(I) VI. Iodocuprate(I) mit zweikernigen Anionen [Cu2I4]2− und [Cu2I6]4−. Z. Naturforsch.1985, 40b, 1032.10.1515/znb-1985-0808Search in Google Scholar

[33] R. D. Willett, Bromination of the 3-chloroanilinium cation: structure of a novel two-dimensional copper (I) bromide lattice prepared via in-situ redox processes. Inorg. Chem.2001, 40, 966.10.1021/ic000699+Search in Google Scholar

[34] T. Yu, J. Shen, Y. Fu, Y. Fu, Solvent-cooperatively directed iodoargentate hybrids: Structures and optical properties. CrystEngComm2014, 16, 5280.10.1039/c3ce42579gSearch in Google Scholar

[35] J.-J. Zhao, X. Zhang, Y.-N. Wang, H.-L. Jia, J.-H. Yu, J.-Q. Xu, New iodocuprates (I) with N-heterocyclic molecules as the cations. J. Solid State Chem.2013, 207, 152.10.1016/j.jssc.2013.09.019Search in Google Scholar

[36] H. Hartl, [{Co(Cp)2}{CuI2}]n (n=3, 4), Cobaltocenium iodocuprates(I) with unusual anion structures. Angew. Chem. Int. Ed.1987, 26, 927.10.1002/anie.198709271Search in Google Scholar

[37] Y. Shen, L. Zhang, P. Sun, S. Liu, W. Jiang, D. Jia, Iodoargentates from clusters to 1D chains and 2D layers induced by solvated lanthanide complex cations: syntheses, crystal structures, and photoluminescence properties. CrystEngComm2018, 20, 520.10.1039/C7CE01833ASearch in Google Scholar

[38] L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, P. Yang, Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science2015, 349, 1518.10.1126/science.aac7660Search in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2020-0021).


Received: 2020-02-28
Accepted: 2020-04-02
Published Online: 2020-04-22
Published in Print: 2020-09-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Original papers
  4. Ulrich Müller zum 80. Geburtstag gewidmet
  5. Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]
  6. The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres
  7. Beryllium triflates: synthesis and structure of BeL2(OTf)2 (L=H2O, THF, nBu2O)
  8. Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates
  9. New mixed-valent alkali chain sulfido ferrates A1+x[FeS2] (A = K, Rb, Cs; x = 0.333–0.787)
  10. Structure solution of incommensurately modulated La6MnSb15
  11. Polymorphs of VO(PO3)2: synthesis and crystal structure refinement revisited
  12. On tungstates of divalent cations (III) – Pb5O2[WO6]
  13. Hydrogen order in hydrides of Laves phases
  14. High-pressure synthesis of SmGe3
  15. The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)
  16. Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes
  17. Elucidating structure–property relationships in imidazolium-based halide ionic liquids: crystal structures and thermal behavior
  18. Syntheses and crystal structures of the manganese hydroxide halides Mn5(OH)6Cl4, Mn5(OH)7I3, and Mn7(OH)10I4
  19. Site-preferential copper substitution for silicon leads to Cu-chains in the new ternary silicide Ir4−xCuSi2
  20. Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide
Downloaded on 30.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2020-0021/pdf
Scroll to top button