Home Desymmetrization in geometry optimization: application to an ab initio study of copper(I) hydration
Article
Licensed
Unlicensed Requires Authentication

Desymmetrization in geometry optimization: application to an ab initio study of copper(I) hydration

  • Cory C. Pye ORCID logo EMAIL logo , Daniel C. M. Whynot , Christopher R. Corbeil ORCID logo and Darren J. W. Mercer
Published/Copyright: July 13, 2020

Abstract

Group theoretical arguments are used to find the subgroup corresponding to symmetry reduction along a particular irreducible representation of a group. The results are used to guide the search for stationary points on the potential energy surface of hydrated copper(I) ion at the HF/6-31G∗, HF/6-31+G∗, HF/6-311+G∗, MP2/6-31G∗, MP2/6-31+G∗, MP2/6-311+G∗, B3LYP/6-31G∗, B3LYP/6-31+G∗, and B3LYP/6-311+G∗ levels. The better levels give the most stable coordination number of two. The effect of desymmetrization on the Cu-O distances and stretching frequencies has been examined.


Corresponding author: Cory C. Pye, Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, B3H 3C3, NS, Canada, E-mail:

Article note: A collection of invited papers based on presentations at the 36th International Conference of Solution Chemistry (ICSC-36), held in Xining, China, 4–8 August 2019.


Funding source: Ontario Power Generation

Funding source: Government of Nova Scotia Department of Economic Development Cooperative Employment Program

Funding source: Compute Canada

Funding source: ACENet

Funding source: Saint Mary’s University Department of Astronomy and Physics

Acknowledgements

CCP would like to acknowledge the former support of NSERC. CCP acknowledges the support of Dr. Peter Tremaine (University of Guelph) and Ontario Power Generation. CRC and DJM acknowledge the support of the Nova Scotia Economic Development Cooperative Employment Program (CRC: Work Term 2 – Winter 2001, DJM: Work Terms 2–3, – Fall 2002 to Winter 2003). CCP, CRC, and DJM thank the Department of Astronomy and Physics, Saint Mary’s University (AP-SMU), for providing access to computing facilities (cygnus). CCP and DCMW thank ACEnet for access to computing facilities (placentia). CCP thanks Compute Canada for access to computing facilities (graham).

References

[1] D. T. Richens. The Chemistry of Aqua Ions, pp. 510–512, Wiley, Chichester (1997).Search in Google Scholar

[2] O. J. Parker, J. H. Espenson. Inorg. Chem. 8, 185–189 (1969), https://doi.org/10.1021/ic50072a001.Search in Google Scholar

[3] O. J. Parker, J. H. Espenson. J. Am. Chem. Soc. 91, 1968–1974 (1969), https://doi.org/10.1021/ja01036a018.Search in Google Scholar

[4] O. J. Parker, J. H. Espenson, Inorg. Chem. 8, 1523–1526 (1969), https://doi.org/10.1021/ic50077a029.Search in Google Scholar

[5] P. M. Holland, A. W. Castleman Jr. J. Chem. Phys. 76, 4195–4205 (1982), https://doi.org/10.1063/1.443497.Search in Google Scholar

[6] T. F. Magnera, D. E. David, J. Michl. J. Am. Chem. Soc. 111, 4100–4101 (1989), https://doi.org/10.1021/ja00193a051.Search in Google Scholar

[7] T. F. Magnera, D. E. David, D. Stulik, R. G. Orth, H. T. Jonkman, J. Michl. J. Am. Chem. Soc. 111, 5036–5043 (1989), https://doi.org/10.1021/ja00196a003.Search in Google Scholar

[8] N. F. Dalleska, K. Honma, L. S. Sunderlin, P. B. Armentrout, J. Am. Chem. Soc. 116, 3519–3528 (1994), https://doi.org/10.1021/ja00087a044.Search in Google Scholar

[9] T. Iino, K. Ohashi, Y. Mune, Y. Inokuchi, K. Judai, N. Nishi, H. Sekiya. Chem. Phys. Lett. 427, 24–28 (2006), https://doi.org/10.1016/j.cplett.2006.06.036.Search in Google Scholar

[10] T. Iino, K. Ohashi, K. Inoue, K. Judai, N. Nishi, H. Sekiya. J. Chem. Phys. 126, 194302 (2007), https://doi.org/10.1063/1.2730830.Search in Google Scholar

[11] P. D. Carnegie, A. B. McCoy, M. A. Duncan. J. Phys. Chem. A 113, 4849–4854 (2009), https://doi.org/10.1021/jp901231q.Search in Google Scholar

[12] M. N. D. S. Cordeiro, J. A. N. F. Gomes, A. Gonzalez-Lafont, J. M. Lluch, A. Oliva, J. Bertran. J. Chem. Soc. Faraday Trans. 84, 693–704 (1988).10.1039/F29888400693Search in Google Scholar

[13] M. Rosi, C. W. Bauschlicher Jr J. Chem. Phys. 90, 7264–7272 (1989).10.1063/1.456204Search in Google Scholar

[14] C. W. Bauschlicher Jr, S. R. Langhoff, H. Partridge. J. Chem. Phys. 94, 2068–2072 (1991), https://doi.org/10.1063/1.459929.Search in Google Scholar

[15] L. A. Curtiss, R. Jurgens. J. Phys. Chem. 94, 5509–5513 (1990), https://doi.org/10.1021/j100377a018.Search in Google Scholar

[16] D. Feller, E. D. Glendening, W. A. de Jong. J. Chem. Phys. 110, 1475–1490 (1999), https://doi.org/10.1063/1.477814.Search in Google Scholar

[17] N. Gresh, C. Policar, C. Giessner-Prettre. J. Phys. Chem. A 106, 5660–5670,(2002), https://doi.org/10.1021/jp0106146.Search in Google Scholar

[18] J. V. Burda, M. Pavelska, M. Simanek. J. Mol. Struct. (Theochem) 683, 183–193 (2004), https://doi.org/10.1016/j.theochem.2004.06.013.Search in Google Scholar

[19] M. S. Taylor, F. Muntean, W. C. Lineberger, A. B. McCoy. J. Chem. Phys. 121, 5688–5699 (2004), https://doi.org/10.1063/1.1782191.Search in Google Scholar

[20] M. Barysz, J. Leszczynski, A. Bilewicz. Phys. Chem. Chem. Phys. 6, 4553–4557 (2004), https://doi.org/10.1039/B408406C.Search in Google Scholar

[21] M. Pavelka, J. V. Burda. Chem. Phys. 312, 193–204 (2005).10.1016/j.chemphys.2004.11.034Search in Google Scholar

[22] C. Gourlaouen, J.-P. Piquemal, T. Saue, O. Parisel. J. Comput. Chem. 27, 142–156 (2005), https://doi.org/10.1002/jcc.20329.Search in Google Scholar

[23] H. M. Lee, S. K. Min, E. C. Lee, J.-H. Min, S. Odde, K. S. Kim. J. Chem. Phys. 122, 064314 (2005), https://doi.org/10.1063/1.1849134.Search in Google Scholar

[24] B. Ni, J. R. Kramer, N. H. Werstiuk. J. Phys. Chem. A 109, 1548–1558 (2005), https://doi.org/10.1021/jp046712j.Search in Google Scholar

[25] J. L. Fulton, M. M. Hoffmann, J. G. Darab, B. J. Palmer, E. A. Stern. J. Phys. Chem. A 104, 11651–11663 (2000), https://doi.org/10.1021/jp001949a.Search in Google Scholar

[26] J. L. Fulton, M. M. Hoffmann, J. G. Darab. Chem. Phys. Lett. 330, 300–308 (2000), https://doi.org/10.1016/S0009-2614(00)01110-6.Search in Google Scholar

[27] L. M. S. G. A. Applegarth, C. R. Corbeil, D. J. W. Mercer, C. C. Pye, P. R. Tremaine. J. Phys. Chem. B 118, 204–214 (2014), https://doi.org/10.1021/jp406580q.Search in Google Scholar

[28] Gaussian 98, Revision A.9, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople. Gaussian, Inc., Pittsburgh PA (1998).Search in Google Scholar

[29] Gaussian 03, Revision D.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford, CT (2004).Search in Google Scholar

[30] Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford, CT (2016).Search in Google Scholar

[31] Y. Ralchenko, A. E. Kramida, J. Reader, NIST ASD Team. National Institute of Standards and Technology, Gaithersburg, MD (2010). https://physics.nist.gov/asd30 (accessed Oct 3, 2010).Search in Google Scholar

Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/pac-2019-1118).

Published Online: 2020-07-13
Published in Print: 2020-10-25

© 2020 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Selected papers from the 36th International Conference on Solution Chemistry (ICSC-36)
  5. Conference papers
  6. Using computational chemistry to explore experimental solvent parameters – solvent basicity, acidity and polarity/polarizability
  7. Solution chemistry in the surface region of aqueous solutions
  8. Water confined in solutions of biological relevance
  9. Real-time in-situ 1H NMR of reactions in peptide solution: preaggregation of amyloid-β fragments prior to fibril formation
  10. Free energy profile of permeation of Entecavir through Hepatitis B virus capsid studied by molecular dynamics calculation
  11. Dielectric relaxation spectroscopy: an old-but-new technique for the investigation of electrolyte solutions
  12. Excess spectroscopy and its applications in the study of solution chemistry
  13. Structure of aqueous sodium acetate solutions by X-Ray scattering and density functional theory
  14. Desymmetrization in geometry optimization: application to an ab initio study of copper(I) hydration
  15. Interactions between adsorbents and adsorbates in aqueous solutions
  16. Modeling vapor-liquid-liquid-solid equilibrium for acetone-water-salt system
  17. Apparent molar volumes of sodium arsenate aqueous solution from 283.15 K to 363.15 K at ambient pressure: an experimental and thermodynamic modeling study
  18. Extraction of various metal ions by open-chain crown ether bridged diphosphates in supercritical carbon dioxide
  19. Solvation heterogeneity in ionic liquids as demonstrated by photo-chemical reactions
  20. The structure and composition of solid complexes comprising of Nd(III), Ca(II) and D-gluconate isolated from solutions relevant to radioactive waste disposal
  21. Separation of phenols from oils using deep eutectic solvents and ionic liquids
Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2019-1118/html
Scroll to top button