Home Effect of pH and Yb3+ doping concentration on the structure and upconversion luminescence properties of GdPO4:Er3+,Yb3+
Article
Licensed
Unlicensed Requires Authentication

Effect of pH and Yb3+ doping concentration on the structure and upconversion luminescence properties of GdPO4:Er3+,Yb3+

  • Yanhong Li ORCID logo EMAIL logo , Jiaxing Qi and Jing Ma
Published/Copyright: February 10, 2025
Become an author with De Gruyter Brill

Abstract

Upconversion luminescence materials hold significant promise for various applications, including lasers, solar cells, anti-counterfeiting technology, biological labeling, and sensor technology. GdPO4 stands out as a highly promising upconversion host material thanks to its exceptional chemical and thermal stability. While the upconversion luminescence properties of Er3+ and Yb3+ co-doped materials are indeed influenced by the crystal environment of rare earth ions within the matrix, the fundamental understanding of how pH and the high concentration of Yb3+ can ultimately affect these luminescence properties is still lacking. In this paper, we synthesized a series of GdPO4:Er3+, Yb3+ upconversion phosphors by a hydrothermal process followed by heat treatments at 900 °C for 2 h. The results of X-ray diffraction and scanning electron microscopy indicate that pH of the initial solution and doping concentration of Yb3+ can indeed affect crystal growth of samples. Spectroscopic studies reveal that the structure, size and morphology can influence the properties of upconversion emission in GdPO4:Er3+, Yb3+ by affecting the local environment of rare earth ions, the surface of sample and the relaxation processes in the samples. The color coordinates calculation illustrates that these implications can ultimately alter the emission color of the samples. This research enhances our comprehension of the role played by the pH of initial solution and the concentration of Yb3+ ions in the synthesis of Er3+, Yb3+ ions co-doped upconversion materials, specifically in fine-tuning the emission color for the final upconversion materials.


Corresponding author: Yanhong Li, School of Material Science and Engineering, Shenyang University of Chemical Technology, Liaoning, Shenyang, 110142, P.R. China, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Yanhong Li: Methodology, Writing, Investigating, Funding acquisition, Supervision, Project administration, Resources. Jiaxing Qing: Experiment, Writing. Jing Ma. Testing. The authors has accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This work was supported by Scientific Study Project for Colleges and Universities, Education Department of Liaoning Province, China (LJ201902).

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Eichhorn, M. Quasi-three-level Solid-State Lasers in the Near and Mid Infrared Based on Trivalent Rare Earth Ions. Appl. Phys. B 2008, 93 (2–3), 269–316; https://doi.org/10.1007/s00340-008-3214-0.Search in Google Scholar

2. Wang, Y.; Zhang, H.; Qu, S.; Su, C. Downconversion and Upconversion Emissions of GdPO4:Yb3+/Tb3+ and its Potential Applications in Solar Cells. J. Alloys Compd. 2016, 677, 266–270; https://doi.org/10.1016/j.jallcom.2016.03.242.Search in Google Scholar

3. Pang, T.; Wu, Y.; Zhang, Y.; Jian, R.; Mao, J.; Wang, H.; Guo, H. Excitation-Wavelength-Dependent Anti-thermal Quenching of Upconversion Luminescence in Hexagonal NaGdF4 :Nd 3+/Yb3+/Er3+ Nanocrystals. J. Mater. Chem. C 2022, 10 (13), 5109–5115; https://doi.org/10.1039/D2TC00263A.Search in Google Scholar

4. Gao, Y.; Qiu, Y.; Wang, X.; Bi, Y.; Zhao, G.; Ding, F.; Sun, Y.; Xu, Z. Large-Scale Synthesis and Luminescence of GdPO4 Hollow Microspheres. RSC Adv. 2018, 8 (39), 21857–21862; https://doi.org/10.1039/C8RA04198A.Search in Google Scholar

5. Xu, H.; Lian, Y.; Lu, Z.; Kolesnikov, I.; Zhao, Y.; He, K.; Su, Z.; Bai, G.; Xu, S. Optical Fiber Temperature Sensor of Er3+/Yb3+ Codoped LaGaO3 Microcrystals with High Reliability and Stability. J. Mater. Chem. C 2022, 10 (29), 10660–10668; https://doi.org/10.1039/D2TC01462A.Search in Google Scholar

6. Dubey, N.; Chandra, S. Upconversion Nanoparticles: Recent Strategies and Mechanism Based Applications. J. Rare Earths 2022, 40 (9), 1343–1359; https://doi.org/10.1016/j.jre.2022.04.015.Search in Google Scholar

7. Sun, J.; Lai, F.; Ke, L.; Chen, J.; Shi, X.; Qiang, Y.; You, W. Upconversion Luminescence of La4Ti9O24: Er–Yb Phosphor with High Green Color Purity. Opt. Mater. 2023, 138, 113656; https://doi.org/10.1016/j.optmat.2023.113656.Search in Google Scholar

8. Min, B. H.; Jung, K. Y. Enhanced Upconversion Luminescence of GdVO4 :Er3+/Yb3+ Prepared by Spray Pyrolysis Using Organic Additives. RSC Adv. 2019, 9 (35), 20002–20008; https://doi.org/10.1039/C9RA03941D.Search in Google Scholar PubMed PubMed Central

9. Jung, K. Y. Aerosol Synthesis of TiO2:Er3+/Yb3+ Submicron-Sized Spherical Particles and Upconversion Optimization for Application as Anti-counterfeiting Materials. RSC Adv. 2020, 10 (28), 16323–16329; https://doi.org/10.1039/D0RA01549K.Search in Google Scholar PubMed PubMed Central

10. Cabello-Guzmán, G.; González, D.; Caro-Díaz, C.; Lillo-Arroyo, L.; Valenzuela-Melgarejo, F.; Cárdenas Triviño, G.; Buono-Core, G.; Chornik, B.; Huentupil, Y. Preliminary Evaluation of the Up-Conversion Emission of Y2O3:Er-Yb Thin Films Prepared by a Solid State Photochemical Deposition Method. J. Lumin. 2018, 204, 401–409; https://doi.org/10.1016/j.jlumin.2018.08.034.Search in Google Scholar

11. Andresen, E.; Islam, F.; Prinz, C.; Gehrmann, P.; Licha, K.; Roik, J.; Recknagel, S.; Resch-Genger, U. Assessing the Reproducibility and Up-Scaling of the Synthesis of Er,Yb-Doped NaYF4-Based Upconverting Nanoparticles and Control of Size, Morphology, and Optical Properties. Sci. Rep. 2023, 13 (1), 2288; https://doi.org/10.1038/s41598-023-28875-8.Search in Google Scholar PubMed PubMed Central

12. Li, Y.; Hong, G.; Zhang, Y.; Yu, Y. Red and Green Upconversion Luminescence of Gd2O3:Er3+, Yb3+ Nanoparticles. J. Alloys Compd. 2008, 456 (1–2), 247–250; https://doi.org/10.1016/j.jallcom.2007.02.013.Search in Google Scholar

13. Mahalingam, V.; Hazra, C.; Naccache, R.; Vetrone, F.; Capobianco, J. A. Enhancing the Color Purity of the Green Upconversion Emission from Er3+/Yb3+-Doped GdVO4 Nanocrystals via Tuning of the Sensitizer Concentration. J. Mater. Chem. C 2013, 1 (40), 6536; https://doi.org/10.1039/c3tc31328j.Search in Google Scholar

14. Wang, Y.; Xu, W.; Zhu, Y.; Xu, S.; Cui, H.; Song, H. Phonon-modulated Upconversion Luminescence Properties in Some Er3+ and Yb3+ Co-activated Oxides. J. Mater. Chem. C 2014, 2 (23), 4642; https://doi.org/10.1039/c4tc00330f.Search in Google Scholar

15. Zheng, W.; Sun, B.; Li, Y.; Lei, T.; Wang, R.; Wu, J. Low Power High Purity Red Upconversion Emission and Multiple Temperature Sensing Behaviors in Yb3+, Er3+ Codoped Gd2O3 Porous Nanorods. ACS Sustain. Chem. Eng. 2020, 8 (25), 9578–9588; https://doi.org/10.1021/acssuschemeng.0c03064.Search in Google Scholar

16. Shang, Y.; Hao, S.; Shao, W.; Chen, T.; Zhu, Y.; Yang, C. Tuning the Upconversion Luminescence of Cubic KMnF3:Yb3+/Er3+ Nanocrystals through Inert Lanthanide Ion Doping. J. Mater. Chem. C 2020, 8 (8), 2847–2851; https://doi.org/10.1039/C9TC06288B.Search in Google Scholar

17. Martín-Rodríguez, R.; Valiente, R.; Polizzi, S.; Bettinelli, M.; Speghini, A.; Piccinelli, F. Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+ −Yb3+ and Eu3+ −Yb3+. J. Phys. Chem. C 2009, 113 (28), 12195–12200; https://doi.org/10.1021/jp901711g.Search in Google Scholar

18. Savchuk, O. A.; Carvajal, J. J.; Cascales, C.; Aguiló, M.; Díaz, F. Benefits of Silica Core–Shell Structures on the Temperature Sensing Properties of Er,Yb:GdVO4 Up-Conversion Nanoparticles. ACS Appl. Mater. Interfaces 2016, 8 (11), 7266–7273; https://doi.org/10.1021/acsami.6b01371.Search in Google Scholar PubMed

19. Meenambal, R.; Kannan, S. Cosubstitution of Lanthanides (Gd3+/Dy3+/Yb3+) in β-Ca3(PO4)2 for Upconversion Luminescence, CT/MRI Multimodal Imaging. ACS Biomater. Sci. Eng. 2018, 4 (1), 47–56; https://doi.org/10.1021/acsbiomaterials.7b00742.Search in Google Scholar PubMed

20. Wang, Z.; Li, J. G.; Zhu, Q.; Kim, B.-N.; Sun, X. Dicarboxylate Mediated Efficient Morphology/phase Tailoring of YPO4 :Ln3+ Crystals and Investigation of Down-/up-Conversion Luminescence. CrystEngComm 2017, 19 (35), 5230–5243; https://doi.org/10.1039/C7CE01248A.Search in Google Scholar

21. Li, P.; Guo, L.; Liang, C.; Li, T.; Chen, P.; Liu, M.; Wu, Y. Effects of Optical-Inert Ions on Upconversion Luminescence and Temperature Sensing Properties of ScVO4 :10%Yb3+/2%Er3+ Nano/micro-Particles. RSC Adv. 2017, 7 (81), 51233–51244; https://doi.org/10.1039/C7RA10035C.Search in Google Scholar

22. Guo, X. Q.; Yan, Y.; Zhang, H. C.; Han, Y.; Song, J.-J. GdPO4:Er3+/Yb3+ Nanorods: Hydrothermal Synthesis and Sensitivity of Green Emission to Yb3+ Concentration. Ceram. Int. 2016, 42 (7), 8738–8743; https://doi.org/10.1016/j.ceramint.2016.02.109.Search in Google Scholar

23. Kumar, V.; Rani, P.; Singh, D.; Chawla, S. Efficient Multiphoton Upconversion and Synthesis Route Dependent Emission Tunability in GdPO4 :Ho3+ , Yb3+ Nanocrystals. RSC Adv. 2014, 4 (68), 36101–36105; https://doi.org/10.1039/C4RA04795H.Search in Google Scholar

24. Fu, Z.; Sheng, T.; Wu, Z.; Yu, Y.; Cui, T. A Novel and Tunable Upconversion Luminescent Material GdPO4: Yb3+, Ln3+ (Ln=Er, Tm, Ho). Mater. Res. Bull. 2014, 56, 138–142; https://doi.org/10.1016/j.materresbull.2014.04.067.Search in Google Scholar

25. Hassairi, M. A.; Garrido Hernández, A.; Dammak, M.; Zambon, D.; Chadeyron, G.; Mahiou, R. Tuning White Upconversion Emission in GdPO4:Er/Yb/Tm Phosphors. J. Lumin. 2018, 203, 707–713; https://doi.org/10.1016/j.jlumin.2018.07.024.Search in Google Scholar

26. Pushpendra; Suryawanshi, I.; Srinidhi, S.; Singh, S.; Kalia, R.; Kunchala, R. K.; Mudavath, S. L.; Naidu, B. S. Downshifting and Upconversion Dual Mode Emission from Lanthanide Doped GdPO4 Nanorods for Unclonable Anti-counterfeiting. Mater. Today Commun. 2021, 26, 102144; https://doi.org/10.1016/j.mtcomm.2021.102144.Search in Google Scholar

27. Kumar, V.; Wang, G. Tuning Green-to-Red Ratio of Ho3+/Yb3+ Activated GdPO4 Upconversion Luminescence Through Eu3+ Doping. J. Lumin. 2018, 199, 188–193; https://doi.org/10.1016/j.jlumin.2018.03.037.Search in Google Scholar

28. García, C. R.; Diaz-Torres, L. A.; Oliva, J.; Hirata, G. A. Green EuAlO3:Eu2+ Nanophosphor for Applications in WLEDs. Opt. Mater. 2014, 37, 520–524; https://doi.org/10.1016/j.optmat.2014.07.016.Search in Google Scholar

29. Subramani, T.; Rafiuddin, M. R.; Shelyug, A.; Ushakov, S.; Mesbah, A.; Clavier, N.; Qin, D.; Szenknect, S.; Elkaim, E.; Dacheux, N.; Navrotsky, A. Synthesis, Crystal Structure, and Enthalpies of Formation of Churchite-type REPO4 ·2H2O (RE =Gd to Lu) Materials. Cryst. Growth Des. 2019, 19 (8), 4641–4649; https://doi.org/10.1021/acs.cgd.9b00524.Search in Google Scholar

30. Halappa, P.; Devakumar, B.; Shivakumara, C. Effect of Ca2+ Ion Co-doping on Radiative Properties via Tuning the Local Symmetry Around the Eu3+ Ions in Orange Red Light Emitting GdPO4 :Eu3+ Phosphors. New J. Chem. 2019, 43 (1), 63–71; https://doi.org/10.1039/C8NJ04372H.Search in Google Scholar

31. Clavier, N.; Mesbah, A.; Szenknect, S.; Dacheux, N. Monazite, Rhabdophane, Xenotime & Churchite: Vibrational Spectroscopy of Gadolinium Phosphate Polymorphs. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2018, 205, 85–94; https://doi.org/10.1016/j.saa.2018.07.016.Search in Google Scholar PubMed

32. Zhang, L.; Yin, M.; You, H.; Yang, M.; Song, Y.; Huang, Y. Mutifuntional GdPO4 :Eu3+ Hollow Spheres: Synthesis and Magnetic and Luminescent Properties. Inorg. Chem. 2011, 50 (21), 10608–10613; https://doi.org/10.1021/ic200867a.Search in Google Scholar PubMed

33. Song, H.; Zhou, L.; Li, L.; Hong, F.; Luo, X. Hydrothermal Synthesis, Characterization and Luminescent Properties of GdPO4·H2O:Tb3+ Nanorods and Nanobundles. Mater. Res. Bull. 2013, 48 (12), 5013–5018; https://doi.org/10.1016/j.materresbull.2013.05.067.Search in Google Scholar

34. Singh, V.; Haritha, P.; Venkatramu, V.; Kim, S. H. Efficient Visible Upconversion Luminescence in Er3+ and Er3+/Yb3+ Co-Doped Y2O3 Phosphors Obtained by Solution Combustion Reaction. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2014, 126, 306–311; https://doi.org/10.1016/j.saa.2014.01.076.Search in Google Scholar PubMed

35. Pollnau, M.; Gamelin, D. R.; Lüthi, S. R.; Güdel, H. U.; Hehlen, M. P. Power Dependence of Upconversion Luminescence in Lanthanide and Transition-Metal-Ion Systems. Phys. Rev. B 2000, 61 (5), 3337–3346; https://doi.org/10.1103/PhysRevB.61.3337.Search in Google Scholar

36. Lei, Y.; Song, H.; Yang, L.; Yu, L.; Liu, Z.; Pan, G.; Bai, X.; Fan, L. Upconversion Luminescence, Intensity Saturation Effect, and Thermal Effect in Gd2O3:Er3+,Yb3+ Nanowires. J. Chem. Phys. 2005, 123 (17), 174710; https://doi.org/10.1063/1.2087487.Search in Google Scholar PubMed

37. Liu, L.; Jiang, H.; Chen, Y.; Zhang, X.; Zhang, Z.; Wang, Y. Power Dependence of Upconversion Luminescence of Er3+ Doped Yttria Nanocrystals and Their Bulk Counterpart. J. Lumin. 2013, 143, 423–431; https://doi.org/10.1016/j.jlumin.2013.05.036.Search in Google Scholar

Received: 2023-12-21
Accepted: 2024-10-09
Published Online: 2025-02-10
Published in Print: 2025-02-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0372/html
Scroll to top button