Abstract
Zn2SiO4:Gd3+ powder was obtained by the sol–gel preparation technique and then characterized by using Fourier-transform infrared spectroscopy and X-ray diffraction techniques. The sample exhibited photoluminescence in the ultraviolet spectral zone with a maximum emission wavelength of 314 nm. Ultraviolet emission in the range of 305–320 nm is also called ultraviolet-B emission. This UV range emission is used in lamps for skin treatment and phototherapy. The electron paramagnetic resonance spectrum recorded for the Zn2SiO4:0.015Gd3+ phosphor revealed g values of 3.46, 2.64, and 2.20, confirming the presence of Gd3+ ions in the small ligand field. Furthermore, Gd3+ ions attain tetrahedral symmetry in the prepared host compound.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no competing interests.
-
Research funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C1092509). This paper was supported by the KU Research Professor Program of Konkuk University.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Thiyagarajan, P.; Kottaisamy, M.; Ramachandra Rao, M. S. Improved Luminescence of Zn2SiO4:Mn Green Phosphor Prepared by Gel Combustion Synthesis of ZnO:Mn–SiO2. J. Electrochem. Soc. 2007, 154 (4), H297–H2303. https://doi.org/10.1149/1.2436607.Search in Google Scholar
2. Chandra, B. B.; Buddhudu, S. Analysis of Structural and Electrical Properties of Ni2+:Zn2SiO4 Ceramic Powders by Sol–Gel Method. J. Sol-Gel Sci. Technol. 2014, 70, 405–415. https://doi.org/10.1007/s10971-014-3296-6.10.1007/s10971-014-3296-6Search in Google Scholar
3. Lavat, A. E.; Gayo, G. X. In Situ Formation of Coloured M (II)–doped Zn2SiO4–Willemite in Ceramic Glazes (M = Mn, Co, Ni, Cu). Ceram. Int. 2014, 40 (8), 11947–11955. https://doi.org/10.1016/j.ceramint.2014.04.031.Search in Google Scholar
4. Aralekallu, S.; Boddula, R.; Singh, V. Development of Glass-Based Microfluidic Devices: A Review on its Fabrication and Biologic Applications. Mater. Des. 2023, 225, 111517–111550. https://doi.org/10.1016/j.matdes.2022.111517.Search in Google Scholar
5. Jiang, Y.; Chen, J.; Xie, Z.; Zheng, L. Syntheses and Optical Properties of α-and β-Zn2SiO4: Mn Nanoparticles by Solvothermal Method in Ethylene Glycol–Water System. Mater. Chem. Phys. 2010, 120 (3), 313–318. https://doi.org/10.1016/j.matchemphys.2009.11.Search in Google Scholar
6. Kang, Y. C.; Park, S. Zn2SiO4:Mn Phosphor Particles Prepared by Spray Pyrolysis Using a Filter Expansion Aerosol Generator. Mater. Res. Bull. 2000, 35 (7), 1143–1451. https://doi.org/10.1016/S0025-5408(00)00306-8.Search in Google Scholar
7. Lu, S. W.; Copeland, T.; Lee, B. I.; Tong, W.; Wagner, B. K.; Park, W.; Zhang, F. Synthesis and Luminescent Properties of Mn2+ Doped Zn2SiO4 Phosphors by a Hydrothermal Method. J. Phys. Chem. Solids 2001, 62 (4), 777–781. https://doi.org/10.1016/S0022-3697(00)00252-3.Search in Google Scholar
8. Kang, Z. T.; Liu, Y.; Wagner, B. K.; Gilstrap, R.; Liu, M.; Summers, C. J. Luminescence Properties of Mn2+ Doped Zn2SiO4 Phosphor Films Synthesized by Combustion CVD. J. Lumin. 2006, 121 (2), 595–600. https://doi.org/10.1016/j.jlumin.2005.12.066.Search in Google Scholar
9. An, J. S.; Noh, J. H.; Cho, I. S.; Roh, H. S.; Kim, J. Y.; Han, H. S.; Hong, K. S. Tailoring the Morphology and Structure of Nanosized Zn2SiO4:Mn2+ Phosphors Using the Hydrothermal Method and Their Luminescence Properties. J. Phys. Chem. C 2010, 114 (23), 10330–10335. https://doi.org/10.1021/jp911731s.Search in Google Scholar
10. Lin, J.; Sänger, D. U.; Mennig, M.; Bärner, K. Sol–gel Deposition and Characterization of Mn2+-Doped Silicate Phosphor Films. Thin Solid Films 2000, 360 (2), 39–45. https://doi.org/10.1016/S0040-6090(99)00523-4.Search in Google Scholar
11. Wang, L.; Liu, X.; Hou, Z.; Li, C.; Yang, P.; Cheng, Z.; Lian, H.; Lin, J. Electrospinning Synthesis and Luminescence Properties of One-Dimensional Zn2SiO4:Mn2+ Microfibers and Microbelts. J. Phys. Chem. C 2008, 112 (48), 1882–1888. https://doi.org/10.1021/jp806392a.Search in Google Scholar
12. Ye, R.; Jia, G.; Deng, D.; Hua, Y.; Cui, Z.; Zhao, S.; Huang, L.; Wang, H.; Li, C.; Xu, S. Controllable Synthesis and Tunable Colors of α-and β-Zn2SiO4:Mn2+ Nanocrystals for UV and Blue Chip Excited White LEDs. J. Phys. Chem. C 2011, 115 (21), 10851–10858. https://doi.org/10.1021/jp2023633.Search in Google Scholar
13. Su, F.; Ma, B.; Ding, K.; Li, G.; Wang, S.; Chen, W.; Joly, A. G.; McCready, D. E. Luminescence Temperature and Pressure Studies of Zn2SiO4 Phosphors Doped with Mn2+ and Eu3+ Ions. J. Lumin. 2006, 116 (2), 117–126. https://doi.org/10.1016/j.jlumin.2005.03.010.Search in Google Scholar
14. Zhang, H. X.; Kam, C. H.; Zhou, Y.; Han, X. Q.; Buddhudu, S.; Lam, Y. L.; Chan, C. Y. Deposition and Photoluminescence of Sol-Gel Derived Tb3+:Zn2SiO4 Films on SiO2/Si. Thin Solid Films 2000, 370, 50–53. https://doi.org/10.1016/S0040-6090(00)00948-2.Search in Google Scholar
15. Zhang, H. X.; Buddhudu, S.; Kam, C. H.; Zhou, Y.; Lam, Y. L.; Wong, K. S.; Ooi, B. S.; Ng, S. L.; Que, W. X. Luminescence of Eu3+ and Tb3+ Doped Zn2SiO4 Nanometer Powder Phosphors. Mater. Chem. Phys. 2001, 68, 31–35. https://doi.org/10.1016/S0254-0584(00)00274-1.Search in Google Scholar
16. Portakal-ucar, Z. G.; Oglakci, M.; Yüksel, M.; Ayvacıklı, M.; Can, N. Structural and Luminescence Characterization of Ce3+ and Mn2+ Co- Activated Zinc Silicate Nanocrystal Obtained by Gel Combustion Synthesis. Mater. Res. Bull. 2021, 133, 111025. https://doi.org/10.1016/j.materresbull.2020.111025.Search in Google Scholar
17. Portakal-uçar, Z. G.; Dogan, T.; Akça, S.; Kaynar, Ü. H.; Topaksu, M. Effect of Sm3+ and Mn2+ Incorporation on the Structure and Luminescence Characteristics of Zn2SiO4 Phosphor. Radiat. Phys. Chem. 2021, 181, 109329. https://doi.org/10.1016/j.radphyschem.2020.109329.Search in Google Scholar
18. Basavaraj, R. B.; Nagabhushana, H.; Prasad, B. D.; Sharma, S. C.; Prashantha, S. C.; Nagabhushana, B. M. A Single Host White Light Emitting Zn2SiO4:Re3+ (Eu, Dy, Sm) Phosphor for LED Applications. Optik 2015, 126, 1745–1756. https://doi.org/10.1016/j.ijleo.2014.07.149.Search in Google Scholar
19. Joly, A. G.; Chen, W.; Zhang, J.; Wang, S. Electronic Energy Relaxation and Luminescence Decay Dynamics of Eu3+ in Zn2SiO4:Eu3+ Phosphors. J. Lumin. 2006, 126, 491–496. https://doi.org/10.1016/j.jlumin.2006.09.004.Search in Google Scholar
20. Sunitha, D. V.; Nagabhushana, H.; Singh, F.; Sharma, S. C.; Dhananjaya, N.; Nagabhushana, B. M.; Chakradhar, R. P. Ion Beam Induced Amorphization and Bond Breaking in Zn2SiO4:Eu3+ Nanocrystalline Phosphor. Spectrochim. Acta, Part A 2012, 90, 18–21. https://doi.org/10.1016/j.saa.2011.12.066.Search in Google Scholar PubMed
21. Samigullina, R. F.; Tyutyunnik, А. P.; Gracheva, I. N.; Krasnenko, Т. I.; Zaitseva, N. A.; Onufrieva, T. A. Hydrothermal Synthesis of α-Zn2SiO4:V Phosphor, Determination of Oxidation States and Structural Localization of Vanadium Ions. Mater. Res. Bull. 2017, 87, 27–33. https://doi.org/10.1016/j.materresbull.2016.11.009.Search in Google Scholar
22. Ramakrishna, P. V.; Murthy, D. B.; Sastry, D. L.; Samatha, K. Synthesis, Synthesis, Structural and Luminescence Properties of Mn Doped ZnO/Zn2SiO4 Composite Microphosphor. Spectrochim. Acta, Part A 2014, 129, 274–279. https://doi.org/10.1016/j.saa.2014.03.081.Search in Google Scholar PubMed
23. Li, G. R.; Qu, D. L.; Arurault, L.; Tong, Y. X. Hierarchically Porous Gd3+-Doped CeO2 Nanostructures for the Remarkable Enhancement of Optical and Magnetic Properties. J. Phys. Chem. C 2009, 113, 1235–1241. https://doi.org/10.1021/jp804572t.Search in Google Scholar
24. Atabaev, T. S.; Hong, N. H. Enhanced Optical Properties of ZrO2:Eu3+ Powders Co-doped with Gadolinium Ions. J. Sol-Gel Sci. Technol. 2017, 82, 15–19. https://doi.org/10.1007/s10971-017-4347-6.Search in Google Scholar
25. Tang, C.; Liu, S.; Liu, L.; Chen, D. P. Luminescence Properties of Gd3+-Doped Borosilicate Scintillating Glass. J. Lumin. 2015, 160, 317–320. https://doi.org/10.1016/j.jlumin.2014.12.033.Search in Google Scholar
26. Ramteke, D. D.; Gedam, R. S. Luminescence Properties of Gd3+ Containing Glasses for Ultra-violet (UV) Light. J. Rare Earths 2014, 32, 389–393. https://doi.org/10.1016/S1002-0721(14)60082-X.Search in Google Scholar
27. Daoud, M.; Zambon, D.; Mahiou, R.; Ammar, A.; Tanouti, B. Spectroscopic Properties of Trivalent Gadolinium in Diphosphate CsYP2O7. Mater. Res. Bull. 1998, 33, 597–603. https://doi.org/10.1016/S0025-5408(98)00012-9.Search in Google Scholar
28. Guo, H.; Dong, N.; Yin, M.; Zhang, W.; Lou, L.; Xia, S. Visible Upconversion in Rare Earth Ion-Doped Gd2O3 Nanocrystals. J. Phys. Chem. B 2004, 108, 19205–19209. https://doi.org/10.1021/jp048072q.Search in Google Scholar
29. Singh, V.; Sivaramaiah, G.; Mohapatra, M.; Rao, J. L.; Singh, N.; Pathak, M. S.; Singh, P. K.; Dhoble, S. J. Probing the Thermodynamic and Magnetic Properties of UV-B-Emitting GdAlO3 Phosphors by ESR and Optical Techniques. J. Electron. Mater. 2017, 46, 1137–1144. https://doi.org/10.1007/s11664-016-5083-3.Search in Google Scholar
30. Tamboli, S.; Kadam, R. M.; Dhoble, S. J. Photoluminescence and Electron Paramagnetic Resonance Properties of a Potential Phototherapic Agent: MMgF4:Gd3+ (M = Ba, Sr) Sub-microphosphors. luminescence 2016, 31, 1321–1328. https://doi.org/10.1002/bio.3109.Search in Google Scholar PubMed
31. Mokoena, P. P.; Nagpure, I. M.; Kumar, V.; Kroon, R. E.; Olivier, E. J.; Neethling, J. H.; Swart, H. C.; Ntwaeaborwa, O. M. Enhanced UVB Emission and Analysis of Chemical States of Ca5(PO4)3OH:Gd3+, Pr3+ Phosphor Prepared by Co-precipitation. J. Phys. Chem. Solids 2014, 75, 998–1003. https://doi.org/10.1016/j.jpcs.2014.04.015.Search in Google Scholar
32. Mohs, A. M.; Lu, Z. R. Gadolinium (III)-based Blood-Pool Contrast Agents for Magnetic Resonance Imaging: Status and Clinical Potential. Expert Opin. Drug Delivery 2007, 4, 149–164. https://doi.org/10.1517/17425247.4.2.149.Search in Google Scholar PubMed
33. Yang, S. H.; Zhang, H. Y.; Huang, C. C.; Tsai, Y. Y.; Liao, S. M. Red Zn2SiO4:Eu3+ and Mg2TiO4:Mn4+ Nanophosphors for On-Site Rapid Optical Detections: Synthesis and Characterization. Appl. Phys. A: Mater. Sci. Process. 2021, 127, 588. https://doi.org/10.1007/s00339-021-04733-0.Search in Google Scholar PubMed PubMed Central
34. Lukić, S. R.; Petrović, D. M.; Dramićanin, M. D.; Mitrić, M.; Ðačanin, L. Optical and Structural Properties of Zn2SiO4:Mn2+ Green Phosphor Nanoparticles Obtained by a Polymer-Assisted Sol–Gel Method. Scr. Mater. 2008, 58, 655–658. https://doi.org/10.1016/j.scriptamat.2007.11.045.Search in Google Scholar
35. Singh, V.; Prasad, A.; Deopa, N.; Rao, A. S.; Jung, S.; Singh, N.; Rao, J. L.; Lakshminarayana, G. Luminescence Features of Mn2+-Doped Zn2SiO4: A Green Color Emitting Phosphor for Solid-State Lighting. Optik 2021, 225, 165715. https://doi.org/10.1016/j.ijleo.2020.165715.Search in Google Scholar
36. Sivakumar, V.; Lakshmanan, A.; Kalpana, S.; Rani, R. S.; Kumar, R. S.; Jose, M. T. Low-temperature Synthesis of Zn2SiO4:Mn Green Photoluminescence Phosphor. J. Lumin. 2012, 132, 1917–1920. https://doi.org/10.1016/j.jlumin.2012.03.007.Search in Google Scholar
37. Rivera-Enríquez, C. E.; Fernández-Osorio, A.; Chávez-Fernández, J. Luminescence Properties of α- and β-Zn2SiO4:Mn Nanoparticles Prepared by a Coprecipitation Method. J. Alloys Compd. 2016, 688, 775–782. https://doi.org/10.1016/j.jallcom.2016.07.266.Search in Google Scholar
38. Bertail, C.; Maron, S.; Buissette, V.; Le Mercier, T.; Gacoin, T.; Boilot, J. P. Structural and Photoluminescent Properties of Zn2SiO4:Mn2+ Nanoparticles Prepared by a Protected Annealing Process. Chem. Mater. 2011, 23, 2961–2967. https://doi.org/10.1021/cm2005902.Search in Google Scholar
39. Lee, J. S.; Khanna, A.; Oh, M.; Ranade, M. B.; Singh, R. K. Synthesis and Characterizatoin of Zn2SiO4:Mn2+ Nanophosphors Prepared from Different Zn Source in Liquid Precursor by Flame Spray Pyrolysis. ECS Trans. 2009, 25, 107–112. https://doi.org/10.1149/1.3211167.Search in Google Scholar
40. Patra, A.; Baker, G. A.; Baker, S. N. Synthesis and Luminescence Study of Eu3+ in Zn2SiO4 Nanocrystals. Opt. Mater. 2004, 27, 15–20. https://doi.org/10.1016/j.optmat.2004.01.003.Search in Google Scholar
41. Ramakrishna, P. V.; Murthy, D. B.; Sastry, D. L. White-Light Emitting Eu3+ Co-doped ZnO/Zn2SiO4:Mn2+ Composite Microphosphor. Spectrochim. Acta, Part A 2014, 125, 234–238. https://doi.org/10.1016/j.saa.2014.01.110.Search in Google Scholar PubMed
42. Babu, B. C.; Buddhudu, S. Emission Spectra of Tb3+:Zn2SiO4 and Eu3+:Zn2SiO4 Sol-Gel Powder Phosphors. J. Spectrosc. Dyn. 2014, 4, 1–8.Search in Google Scholar
43. Babu, B. C.; Naresh, V.; Prakash, B. J.; Buddhudu, S. Structural, Thermal and Dielectric Properties of Lithium Zinc Silicate Ceramic Powders by Sol-Gel Method. Ferroelectr. Lett. 2011, 38, 114–127. https://doi.org/10.1080/07315171.2011.623610.Search in Google Scholar
44. Zhang, Q. Y.; Pita, K.; Kam, C. H. Sol–gel Derived Zinc Silicate Phosphor Films for Full-Color Display Applications. J. Phys. Chem. Solids 2003, 64, 333–338. https://doi.org/10.1016/S0022-3697(02)00331-1.Search in Google Scholar
45. Singh, V.; Singh, N.; Pathak, M. S.; Kaur, S.; Jayasimhadri, M.; Watanabe, S.; Gundu Rao, T. K. UV Radiation Emitting Gd3+ Activated Sr2SiO4 Host System Prepared by Sol-Gel Procedure: Structural, Electron Paramagnetic Resonance, and Luminescence Studies. J. Mater. Sci.: Mater. Electron. 2018, 29, 20759–20767. https://doi.org/10.1007/s10854-018-0217-4.Search in Google Scholar
46. Taoli, D. E.; Shirun, Y. A.; Jianguo, H. U. A Novel Narrow Band UV-B Emitting Phosphor-YPO4:Sb3+, Gd3+. J. Rare Earths 2016, 34, 137–142. https://doi.org/10.1016/S1002-0721(16)60005-4.Search in Google Scholar
47. Singh, V.; Sivaramaiah, G.; Rao, J. L.; Kim, S. H. Investigation of New UV-Emitting, Gd-Activated Y4Zr3O12 Phosphors Prepared via Combustion Method. J. Lumin. 2015, 157, 82–87. https://doi.org/10.1016/j.jlumin.2014.08.004.Search in Google Scholar
48. Singh, V.; Sivaramaiah, G.; Rao, J. L.; Kim, S. H. Luminescence and Electron Paramagnetic Resonance Investigation on Ultraviolet Emitting Gd Doped MgAl2O4 Phosphors. J. Lumin. 2013, 143, 162–168. https://doi.org/10.1016/j.jlumin.2013.03.054.Search in Google Scholar
49. Mokoena, P. P.; Gohain, M.; Bezuidenhoudt, B. C.; Swart, H. C.; Ntwaeaborwa, O. M. Luminescent Properties and Particle Morphology of Ca3(PO4)2:Gd3+, Pr3+ Phosphor Powder Prepared by Microwave Assisted Synthesis. J. Lumin. 2014, 155, 288–292. https://doi.org/10.1016/j.jlumin.2014.06.058.Search in Google Scholar
50. Chauhan, A. O.; Bajaj, N. S.; Omanwar, S. K. Synthesis and Photoluminescence Study of Narrow-Band UVB-Emitting LiSr4(BO3)3:Gd3+, Pr3+ Phosphor. Bull. Mater. Sci. 2017, 40, 1–6. https://doi.org/10.1007/s12034-016-1344-2.Search in Google Scholar
51. Gawande, A. B.; Sonekar, R. P.; Omanwar, S. K. Combustion Synthesis of Narrow-Band UVB Emitting Borate Phosphors LaB3O6:Bi,Gd and YBaB9O16:Bi,Gd for Phototherapy Applications. Optik 2016, 127, 3925–3927. https://doi.org/10.1016/j.ijleo.2016.01.035.Search in Google Scholar
52. Sivaramaiah, G. Spectroscopic Study of Materials: Innovation in Physics; Saarbrucken, Germany: LAP LAMBERT Academic Publishing, 2016.Search in Google Scholar
53. Petersen, M.; Hafner, J.; Marsman, M. Structural, Electronic and Magnetic Properties of Gd Investigated by DFT + U Methods: Bulk, Clean and H-Covered (0001) Surfaces. J. Phys.: Condens. Matter 2006, 18, 7021–7043. https://doi.org/10.1088/0953-8984/18/30/007.Search in Google Scholar
54. Abragam, A.; Bleaney, B. Electron Paramagnetic Resonance of Transition Ions; Oxford, England: Clarendon P, 1970.Search in Google Scholar
55. Rao, A. S.; Rao, J. L.; Kumar, V. V.; Jayasankar, C. K.; Lakshman, S. V. Electron Paramagnetic Resonance and Optical Absorption Spectra of Gd3+ Ions in Alkali Cadmium Borosulphate Glasses. Phys. Status Solidi 1992, 174, 183–191. https://doi.org/10.1002/pssb.2221740118.Search in Google Scholar
56. Rada, S.; Culea, E.; Rada, M. The Experimental and Theoretical Investigations on the Structure of the Gadolinium-Lead-Tellurate Glasses. Mater. Chem. Phys. 2011, 128, 464–469. https://doi.org/10.1016/j.matchemphys.2011.03.032.Search in Google Scholar
57. Simon, S.; Ardelean, I.; Filip, S.; Bratu, I.; Cosma, I. Structure and Magnetic Properties of Bi2O3-GeO2-Gd2O3 Glasses. Solid State Commun. 2000, 116, 83–86. https://doi.org/10.1016/S0038-1098(00)00287-8.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Experimental investigation and thermodynamic analysis of TiC–Fe cermets with Mo additions
- Investigations on porous silicon nitride ceramics prepared by the gel-casting method
- Catalysis effect of rare earth element Ce on paste boriding treatment of AISI 410 steel
- Effect of nitrogen content on the static recrystallization and precipitation behaviors of vanadium–titanium microalloyed steels
- Effects of addition of Er and Zr on microstructure and mechanical properties of Al–Cu–Mn–Si–Mg alloy
- The quasi-binary phase diagrams of R 2Fe14B–Ce2Fe14B (R = Nd, Pr) systems
- Trivalent Gd incorporated Zn2SiO4 phosphor material for EPR and luminescence investigations
- Effects of translaminar edge crack and fiber angle on fracture toughness and crack propagation behaviors of laminated carbon fiber composites
- Blast protection of underwater tunnels with 3D auxetic materials
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Experimental investigation and thermodynamic analysis of TiC–Fe cermets with Mo additions
- Investigations on porous silicon nitride ceramics prepared by the gel-casting method
- Catalysis effect of rare earth element Ce on paste boriding treatment of AISI 410 steel
- Effect of nitrogen content on the static recrystallization and precipitation behaviors of vanadium–titanium microalloyed steels
- Effects of addition of Er and Zr on microstructure and mechanical properties of Al–Cu–Mn–Si–Mg alloy
- The quasi-binary phase diagrams of R 2Fe14B–Ce2Fe14B (R = Nd, Pr) systems
- Trivalent Gd incorporated Zn2SiO4 phosphor material for EPR and luminescence investigations
- Effects of translaminar edge crack and fiber angle on fracture toughness and crack propagation behaviors of laminated carbon fiber composites
- Blast protection of underwater tunnels with 3D auxetic materials
- News
- DGM – Deutsche Gesellschaft für Materialkunde