Abstract
The green approach is a simple and efficient method for generating metal oxide nanoparticles. Magnesium oxide nanoparticles gained prominence due to their unique biodegradation, microbe growth inhibition, and non-toxicity properties. The seed extract of Eucalyptus tereticornis was used to make magnesium oxide nanoparticles in this research. Using X-ray diffraction data, the average crystallite size of nanoparticles is estimated to be about 10 nm. Face-centered cubic structured magnesium oxide nanoparticles have a spherical surface morphology, as seen in transmission electron microscopy and scanning electron microscopy images. Fourier transform infra-red spectra are used to identify functional groups involved in the stabilization and reduction of precursor salt. Magnesium oxide nanoparticles are employed for a variety of applications including temperature dehydrating agents, high-grade ceramic materials, optoelectronic fields, and bio-medical studies such as antibacterial and antimicrobial.
Funding source: National Chemical Laboratory
Award Identifier / Grant number: Unassigned
Acknowledgment
The authors are grateful to the Director of the National Institute of Technology for providing laboratory space. For TEM research, the authors are grateful to the National Chemical Laboratory in Pune.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The author declares no potential for conflicts of interest.
References
1. Sheldon, R. A., Arends, I., Hanefeld, U. Green Chemistry and Catalysis; Wiley-VCH, 2007, p. 448. 10.1002/9783527611003Search in Google Scholar
2. Anastas, P. T., Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998; p. 29.Search in Google Scholar
3. Ashokkumar, S., Ravi, S., Kathiravan, V., Velmurugan, S. Spectrochim. Acta, Part A 2015, 134, 34. https://doi.org/10.1007/s11356-014-3012-7.Search in Google Scholar PubMed
4. Yue, H. L., Hu, Y. J., Chen, J., Bai, A. M., Ouyang, Y. Colloids Surf., B 2014, 122, 107. https://doi.org/10.1016/j.colsurfb.2014.06.055.Search in Google Scholar PubMed
5. Nagarajan, R., Hatton, T. A., Eds. Nanoparticles: Synthesis, Stabilization, Passivation, and Functionalization; American Chemical Society: Washington DC, 2008; p. 449.10.1021/bk-2008-0996Search in Google Scholar
6. Garcia, S., Buckley, J. J., Brutchey, R. L., Humphrey, S. M. Inorg. Chim. Acta. 2014, 422, 65. https://doi.org/10.1016/j.ica.2014.07.035.Search in Google Scholar
7. Safdar, M. Green Nanotechnology: Its Definition, Introduction and Goals; 2011.Search in Google Scholar
8. Anbuvannan, M., Ramesh, M., Viruthagiri, G., Shanmugam, N., Kannadasan, N. Mater. Sci. Semicond. Process. 2015, 39, 621. https://doi.org/10.1016/j.mssp.2015.06.005.Search in Google Scholar
9. Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V., Raj, G. A. Adv. Powder Technol. 2015, 26, 1639. https://doi.org/10.1016/j.apt.2015.09.008.Search in Google Scholar
10. Gowri, S., Gandhi, R. R., Sundrarajan, M. J. Mater. Sci. Technol. 2014, 30, 782. https://doi.org/10.1016/j.jmst.2014.03.002.Search in Google Scholar
11. Amina, M., Al Musayeib, N. M., Alarfaj, N. A., El-Tohamy, M. F., Oraby, H. F., Al Hamoud, G. A., Bukhari, S. I., Moubayed, N. M. PLoS One 2020, 15, 0237567. https://doi.org/10.1371/journal.pone.0237567.Search in Google Scholar PubMed PubMed Central
12. Khan, M. I., Akhtar, M. N., Ashraf, N., Najeeb, J., Munir, H., Awan, T. I., Tahir, M. B., Kabli, M. R. Appl. Nanosci. 2020, 10, 2351. https://doi.org/10.1007/s13204-020-01414-x.Search in Google Scholar
13. Vergheese, M., Vishal, S. K. J. Pharmacogn. Phytochem. 2018, 7, 1193.Search in Google Scholar
14. Suresh, J., Pradheesh, G., Alexramani, V., Sundrarajan, M., Hong, S. I. Adv. Powder Technol. 2018, 29, 1685. https://doi.org/10.1016/j.apt.2018.04.003.Search in Google Scholar
15. Umaralikhan, L., Jaffar, M. J. M. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 477. https://doi.org/10.1007/s40995-016-0041-8.Search in Google Scholar
16. Sharma, G., Soni, R., Jasuja, N. D. J. Taibah Univ. Sci. 2017, 11, 471. https://doi.org/10.1016/j.jtusci.2016.09.004.Search in Google Scholar
17. Ali, R., Shanan, Z. J., Saleh, G. M., Abass, Q. Iraqi J. Sci. 2020, 61, 266. https://doi.org/10.24996/ijs.2020.61.2.9.Search in Google Scholar
18. Elakkiya, V. T., Rajaram, K., Meenakshi, R. V., Shankar, K. R., Sureshkumar, P. Green Synthesis of Nanoparticles: Applications and Prospects; Springer: Singapore, 2020, vol. 289; pp. 289–300.10.1007/978-981-15-5179-6_13Search in Google Scholar
19. Essien, E. R., Atasie, V. N., Oyebanji, T. O., Nwude, D. O. Chem. Pap. 2020, 74, 2101–2109. https://doi.org/10.1007/s11696-020-01056-x.Search in Google Scholar
20. Sharma, S. K., Khan, A. U., Khan, M., Gupta, M., Gehlot, A., Park, S., Alam, M. Micro Nano Lett. 2020, 15, 30. https://doi.org/10.1049/mnl.2019.0358.Search in Google Scholar
21. Bhatia, C. L. Eucalyptus in India-Its Status and Research Needs; Indian Council of Forestry Research and Education: India, Vol. 110, 1984.Search in Google Scholar
22. Tiwari, P., Sahu, P. K. Res. J. Pharm. Technol. 2018, 11, 2677. https://doi.org/10.5958/0974-360X.2018.00496.1.Search in Google Scholar
23. Zhang, JB, An, M., Wu, H., Stanton, R., Lemerle, D. Allelopathy J. 2010, 25, 313–330.Search in Google Scholar
24. Chopra, D. S., Mahla, K. Phytonanotechnology 2020, 15, 187. https://doi.org/10.1016/B978-0-12-822348-2.00006-1.Search in Google Scholar
25. Rani Verma, P., Khan, F. Inorg. Nano-Met. Chem. 2019, 49, 69. https://doi.org/10.1080/24701556.2019.1601738.Search in Google Scholar
26. Abdallah, Y., Ogunyemi, S. O., Abdelazez, A., Zhang, M., Hong, X., Ibrahim, E., Hossain, A., Fouad, H., Li, B., Chen, J. BioMed Res. Int. 2019, 2019, Article ID 5620989. https://doi.org/10.1155/2019/5620989.Search in Google Scholar PubMed PubMed Central
27. Srivastava, V., Sharma, Y. C., Sillanpaa, M. Ceram. Int. 2015, 41, 6702–6709. https://doi.org/10.1016/J.CERAMINT.2015.01.112.Search in Google Scholar
28. Essien, E. R., Atasie, V. N., Okeafor, A. O., Nwude, D. O. Int. Nano Lett. 2020, 10, 43–48. https://doi.org/10.1007/s40089-019-00290-w.Search in Google Scholar
29. Cai, L., Chen, J., Liu, Z., Wang, H., Yang, H., Ding, W. Front. Microbiol. 2018, 9, 790. https://doi.org/10.3389/fmicb.2018.00790.Search in Google Scholar PubMed PubMed Central
30. Sushma, N. J., Prathyusha, D., Swathi, G., Madhavi, T., Raju, B. D. P., Mallikarjuna, K., Kim, H. S. Appl. Nanosci. 2016, 6, 437. https://doi.org/10.1007/s13204-015-0455-1.Search in Google Scholar
31. Shkir, M., AlFaify, S. Sci. Rep. 2017, 7, 1. https://doi.org/10.1038/s41598-017-16086-x.Search in Google Scholar PubMed PubMed Central
32. Ravikumar, K., Agilan, S., Raja, M., Marnadu, R., Alshahrani, T., Shkir, M., Balaji, M., Ganesh, R. Physica B 2020, 599, 412452. https://doi.org/10.1016/J.PHYSB.2020.412452.Search in Google Scholar
33. Shkir, M., Ashraf, I. M., AlFaify, S., El-Toni, A. M., Ahmed, M., Khan, A. Ceram. Int. 2020, 46, 4652. https://doi.org/10.1016/J.CERAMINT.2019.10.196.Search in Google Scholar
34. Bindhu, M. R., Umadevi, M., Micheal, M. K., Arasu, M. V., Al-Dhabi, N. A. Mater. Lett. 2016, 166, 19. https://doi.org/10.1016/j.matlet.2015.12.020.Search in Google Scholar
35. Diana, P., Saravanakumar, S., Prasad, K. H., Sivaganesh, D., Chidhambaram, N., Isaac, R. R., Alshahrani, T., Shkir, M., AIFaify, S., Ali, K. S. J. Inorg. Organomet. Polym. Mater. 2021, 31, 3027–3036. https://doi.org/10.1007/s10904-021-01896-4.Search in Google Scholar
36. Akshaykranth, A., Jayarambabu, N., Tumu, V. R., Rajaboina, R. K. J. Inorg. Organomet. Polym. Mater. 2021, 31, 2393. https://doi.org/10.1007/s10904-021-01915-4.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Preparations and applications of organic conducting polymers/graphene composites in heavy metal ion sensing: a review
- Original Papers
- Complex dielectric, electric modulus, impedance, and optical conductivity of Sr3−x Pb x Fe2TeO9 (x = 1.50, 1.88 and 2.17)
- Complex permittivity and predominance of non-overlapping small-polaron tunneling conduction process in copper indium selenide compound
- Effect of Bacillus and Pseudomonas biofilms on the corrosion behavior of AISI 304 stainless steel
- Fabrication of magnesium oxide nanoparticles using Eucalyptus tereticornis seed extract and their characterisation
- Greener route for synthesis of cerium oxide and Fe-doped cerium oxide nanoparticles using acacia concinna fruit extract
- Phase equilibria of Ni–Al–Pd and Ni–Cr–Pd ternary systems and Ni–Al–Cr–Pd quaternary system at 1423 K
- Effect of grain size on oxidation behaviour of Ag-20Cu-30Cr alloys in 0.1 MPa pure O2 at 700 and 800 °C
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Review
- Preparations and applications of organic conducting polymers/graphene composites in heavy metal ion sensing: a review
- Original Papers
- Complex dielectric, electric modulus, impedance, and optical conductivity of Sr3−x Pb x Fe2TeO9 (x = 1.50, 1.88 and 2.17)
- Complex permittivity and predominance of non-overlapping small-polaron tunneling conduction process in copper indium selenide compound
- Effect of Bacillus and Pseudomonas biofilms on the corrosion behavior of AISI 304 stainless steel
- Fabrication of magnesium oxide nanoparticles using Eucalyptus tereticornis seed extract and their characterisation
- Greener route for synthesis of cerium oxide and Fe-doped cerium oxide nanoparticles using acacia concinna fruit extract
- Phase equilibria of Ni–Al–Pd and Ni–Cr–Pd ternary systems and Ni–Al–Cr–Pd quaternary system at 1423 K
- Effect of grain size on oxidation behaviour of Ag-20Cu-30Cr alloys in 0.1 MPa pure O2 at 700 and 800 °C
- News
- DGM – Deutsche Gesellschaft für Materialkunde