Home Investigation of the effect of aging on wood hygroscopicity by 2D 1H NMR relaxometry
Article
Licensed
Unlicensed Requires Authentication

Investigation of the effect of aging on wood hygroscopicity by 2D 1H NMR relaxometry

  • Leila Rostom , Denis Courtier-Murias , Stéphane Rodts and Sabine Care EMAIL logo
Published/Copyright: November 7, 2019
Become an author with De Gruyter Brill

Abstract

Two-dimensional proton nuclear magnetic resonance (2D 1H NMR) relaxometry is increasingly used in the field of wood sciences due to its great potential in detecting and quantifying water states at the level of wood constituents. More precisely, in this study, this technique is used to investigate the changes induced by “natural” and “artificial” aging methods on modern and historical oak woods. Two bound water components are detected and present differences in terms of association to the different wood polymers in cell walls: one is more strongly associated with wood polymers than the other. The evolution of the two bound water types is discussed in regard to aging methods and is related to the structure of the cell wall, especially with the S2 layer and the evolution of wood chemical composition (cellulose, hemicelluloses and lignin). The evolution of hydric strains is also discussed taking into account the effect of aging methods on the two bound water components. The obtained results confirm the ability of 2D 1H NMR relaxometry to evaluate the effect of aging at the molecular level and on hydric deformation. Furthermore, this method shows that it is possible to determine the moisture content of wood without the necessity to oven-dry the wood material.

  1. Author contributions: L.R., D.C-M, S.R. and S.C. conceived and designed the experiments. L.R. carried out the experiments. L.R., D.C-M and S.C. analyzed and interpreted data and wrote the manuscript.

  2. Research funding: The I-Site Future (Champs-sur-Marne, France) for its financial support and Atelier Perrault (Nantes, France) for providing aged wood are acknowledged.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

References

Araujo, C.D., Avramidis, S., MacKay, A.L. (1994) Behaviour of solid wood and bound water as a function of moisture content: a proton magnetic resonance study. Holzforschung 48:69–74.10.1515/hfsg.1994.48.1.69Search in Google Scholar

Beck, G., Thybring, E.E., Thygesen, L.G., Hill, C. (2018) Characterization of moisture in acetylated and propionylated radiata pine using low-field nuclear magnetic resonance (LFNMR) relaxometry. Holzforschung 72:225–233.10.1515/hf-2017-0072Search in Google Scholar

Bonnet, M. (2017) Analyse multi-échelle du comportement hygromécanique du bois: Mise en évidence par relaxométrie du proton et mesures de champs volumiques de l’influence de l’hétérogénéité au sein du cerne (Doctoral dissertation, Université Paris-Est, France). In French.Search in Google Scholar

Bonnet, M., Courtier-Murias, D., Faure, P., Rodts, S., Care, S. (2017) NMR determination of sorption isotherms in earlywood and latewood of Douglas fir. Identification of bound water components related to their local environment. Holzforschung 71:481–490.10.1515/hf-2016-0152Search in Google Scholar

Boyd, J.D. (1982) An anatomical explanation for visco-elastic and mechano-sorptive creep in wood, and effects of loading rate on strength. In: New Perspectives in Wood Anatomy. Ed. Baas, P. Forestry Sciences, Vol 1. Springer, Dordrecht. pp. 171–222.10.1007/978-94-017-2418-0_8Search in Google Scholar

Candelier, K. (2013) Caractérisation des transformations physico-chimiques intervenant lors de la thermodégradation du bois. Influence de l’intensité de traitement, de l’essence et de l’atmosphère (Doctoral dissertation, Université de Lorraine). In French.Search in Google Scholar

Candelier, K., Thevenon, M.F., Petrissans, A., Dumarcay, S., Gerardin, P., Petrissans, M. (2016) Control of wood thermal treatment and its effects on decay resistance: a review. Ann. Forest Sci. 73:571–583.10.1007/s13595-016-0541-xSearch in Google Scholar

Carr, H.Y., Purcell, E.M. (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94:630.10.1103/PhysRev.94.630Search in Google Scholar

Chaouch, M. (2011) Effet de l’intensité du traitement sur la composition élémentaire et la durabilité du bois traité thermiquement: développement d’un marqueur de prédiction de la résistance aux champignons basidiomycètes (Doctoral dissertation, Nancy 1). In French.Search in Google Scholar

Chaouch, M., Pétrissans, M., Pétrissans, A., Gérardin, P. (2010) Use of wood elemental composition to predict heat treatment intensity and decay resistance of different softwood and hardwood species. Polym. Degrad. Stabil. 95:2255–2259.10.1016/j.polymdegradstab.2010.09.010Search in Google Scholar

Cox, J., McDonald, P.J., Gardiner, B.A. (2010) A study of water exchange in wood by means of 2D NMR relaxation correlation and exchange. Holzforschung 64:259–266.10.1515/hf.2010.036Search in Google Scholar

Endo, K., Obataya, E., Zeniya, N., Matsuo, M. (2016) Effects of heating humidity on the physical properties of hydrothermally treated spruce wood. Wood Sci. Technol. 50:1161–1179.10.1007/s00226-016-0822-4Search in Google Scholar

Épaud, F. (2007) De la charpente romane à la charpente gothique en Normandie. Évolution des techniques et des structures de charpenterie aux XIIe-XIIIe siècles, Caen, Publications du CRAHM (« Archéologie médiévale »), 624 pp. In French.Search in Google Scholar

Esteves, B., Pereira, H. (2008) Wood modification by heat treatment: a review. BioResources 4:370–404.10.15376/biores.4.1.EstevesSearch in Google Scholar

Fayolle, B., Verdu, J. (2005) Vieillissement physique des matériaux polymères. Ed. Techniques Ingénieur. In French.10.51257/a-v1-cor108Search in Google Scholar

Fourmentin, M. (2015) Impact de la répartition et des transferts d’eau sur les propriétés des matériaux de construction à base de chaux formulées. PhD thesis: Université Paris-Est, France. In French.Search in Google Scholar

Fredriksson, M., Garbrecht Thygesen, L. (2017) The states of water in Norway spruce (Picea abies (L.) Karst.) studied by low-field nuclear magnetic resonance (LFNMR) relaxometry: assignment of free-water populations based on quantitative wood anatomy. Holzforschung 71:77–90.10.1515/hf-2016-0044Search in Google Scholar

Froidevaux, J. (2012) Wood and paint layers aging and risk analysis of ancient panel painting (Doctoral dissertation, Université Montpellier II-Sciences et Techniques du Languedoc).Search in Google Scholar

Gauvin, C. (2015) Étude expérimentale et numérique du comportement hygromécanique d’un panneau de bois. Application à la conservation des tableaux peints sur bois du patrimoine (Doctoral dissertation, University of Montpellier, France). In French.Search in Google Scholar

Hill, C.A.S. Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons, Chichester, West Sussex, UK, 2006.10.1002/0470021748Search in Google Scholar

Hillis, W.E. (1971) Distribution, properties and formation of some wood extractives. Wood Sci. Technol 5:272–289.10.1007/BF00365060Search in Google Scholar

Inari, G.N., Pétrissans, M., Pétrissans, A., Gérardin, P. (2009) Elemental composition of wood as a potential marker to evaluate heat treatment intensity. Polym. Degrad. Stability 94:365–368.10.1016/j.polymdegradstab.2008.12.003Search in Google Scholar

Jankowska, A., Drożdżek, M., Sarnowski, P., Horodeński, J. (2017) Effect of extractives on the equilibrium moisture content and shrinkage of selected tropical wood species. BioResource 12:597–607.10.15376/biores.12.1.597-607Search in Google Scholar

Kekkonen, P. (2014) Characterization of thermally modified wood by NMR spectroscopy: microstructure and moisture components (Academic dissertation, University of Oulu, Finland).Search in Google Scholar

Kollmann, F., Fengel, D. (1965) Changes in chemical composition of wood by thermal treatment. Holz als Roh- und Werkstoff 23:461.10.1007/BF02627217Search in Google Scholar

Kranitz, K. (2014) Effect of natural aging on wood (doctoral dissertation, ETH-Zürich, Switzerland).Search in Google Scholar

Kránitz, K., Sonderegger, W., Bues, C.T., Niemz, P. (2016) Effects of aging on wood: a literature review. Wood Sci. Technol. 50:7–22.10.1007/s00226-015-0766-0Search in Google Scholar

Labbé, N., Jéso, B.D., Lartigue, J.-C., Daudé, G., Pétraud, M., Ratier, M. (2002) Moisture content and extractive materials in maritime pine wood by low field 1H NMR. Holzforschung 56:25–31.10.1515/HF.2002.005Search in Google Scholar

Matsuo, M., Yokoyama, M., Umemura, K., Sugiyama, J., Kawai, S., Gril, J., Kubodera, S., Mitsutani, T., Ozaki, H., Sakamoto, M., Imamura, M. (2011) Aging of wood – Analysis of color changing during natural aging and heat treatment. Holzforschung 65:361–368.10.1515/hf.2011.040Search in Google Scholar

Meiboom, S., Gill, D. (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29:688–691.10.1063/1.1716296Search in Google Scholar

Menon, R.S., Mackay, A.L., Hailey, J.R.T., Bloom, M., Burgess, A.E., Swanson, J.S. (1987) An NMR determination of the physiological water distribution in wood during drying. J. Appl. Polym. Sci. 33:1141–1155.10.1002/app.1987.070330408Search in Google Scholar

Murata, K., Watanabe, Y., Nakano, T. (2013) Effect of thermal treatment on fracture properties and adsorption properties of spruce wood. Materials 6:4186–4197.10.3390/ma6094186Search in Google Scholar PubMed PubMed Central

Obataya, E. (2007) Effects of ageing and heating on the mechanical properties of wood. In: Wood Science for Conservation of Cultural Heritage, Florence 2007: Proceedings of the International Conference Hld by Cost Action IE0601 in Florence (Italy), 8–10 November 2007 (pp. 1000–1008). Firenze University Press.Search in Google Scholar

Rajohnson, J.R. (1996) Etude expérimentale et modélisation du traitement thermique de rétification du bois massif sous gaz convectif en vue d’améliorer ses propriétés physico-chimiques (Doctoral dissertation, Ecole Nationale Supérieure des Mines de Saint-Etienne). In French.Search in Google Scholar

Rautkari, L., Hill, C.A., Curling, S., Jalaludin, Z., Ormondroyd, G. (2013) What is the role of the accessibility of wood hydroxyl groups in controlling moisture content? J. Mater. Sci. 48:6352–6356.10.1007/s10853-013-7434-2Search in Google Scholar

Salmén, L., Burgert, I. (2009) Cell wall features with regard to mechanical performance. A review. Holzforschung 63:121–129.10.1515/HF.2009.011Search in Google Scholar

Sandberg, D., Haller, P., Navi, P. (2013) Thermo-hydro and thermo-hydro-mechanical wood processing: an opportunity for future environmentally friendly wood products. Wood Mater. Sci. Eng. 8:64–88.10.1080/17480272.2012.751935Search in Google Scholar

Song, Y.Q., Venkataramanan, L., Hürlimann, M.D., Flaum, M., Frulla, P., Straley, C. (2002) T1–T2 correlation spectra obtained using a fast two-dimensional Laplace inversion. J. Magn. Reson. 154:261–268.10.1006/jmre.2001.2474Search in Google Scholar PubMed

Tjeerdsma, B.F., Boonstra, M., Pizzi, A., Tekely, P., Militz, H. (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh- und Werkstoff 56:149.10.1007/s001070050287Search in Google Scholar

Wentzel, M., Altgen, M., Militz, H. (2018) Analyzing reversible changes in hygroscopicity of thermally modified eucalypt wood from open and closed reactor systems. Wood Sci. Technol. 52:889–907.10.1007/s00226-018-1012-3Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hf-2019-0052).


Received: 2019-02-26
Accepted: 2019-08-29
Published Online: 2019-11-07
Published in Print: 2020-03-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hf-2019-0052/html
Scroll to top button