Home Study on the impregnation quality of rubberwood (Hevea brasiliensis Müll. Arg.) and English oak (Quercus robur L.) sawn veneers after treatment with 1,3-dimethylol-4,5- dihydroxyethyleneurea (DMDHEU)
Article
Licensed
Unlicensed Requires Authentication

Study on the impregnation quality of rubberwood (Hevea brasiliensis Müll. Arg.) and English oak (Quercus robur L.) sawn veneers after treatment with 1,3-dimethylol-4,5- dihydroxyethyleneurea (DMDHEU)

  • Lukas Emmerich EMAIL logo and Holger Militz
Published/Copyright: February 14, 2020
Become an author with De Gruyter Brill

Abstract

The efficacy of chemical wood modification is closely related to the permeability of the wood species and the cell wall deposition of the reagent, causing a permanent swelling (“bulking effect”). This study aimed to analyze how rubberwood (Hevea brasiliensis Müll. Arg.) and English oak (Quercus robur L.) may be affected by chemical wood modification, although they are known to show either variations in permeability or being less permeable. Thin clear veneers were treated with 1,3-dimethylol-4,5- dihydroxyethyleneurea (DMDHEU) which resulted in significantly reduced moisture-induced swelling and increased the resistance to static and dynamic indentation loads. The results evidenced significantly lower liquid uptakes in English oak compared to rubberwood, which directly affected the weight percent gains (WPGs) and restricted the range for potential improvements of the material properties. Surprisingly, rubberwood showed a lower cell wall bulking, which, in comparison with English oak, indicated less DMDHEU monomers entering the cell walls and rather being located in the cell lumens. Atypical for treatments with cell wall penetration chemicals, no further decrease in maximum swelling (SM) was detected with increasing bulking in rubberwood specimens. English oak showed higher variations in DMDHEU distribution within treated veneers and between earlywood and latewood areas, effecting a less homogeneous performance.

Acknowledgments

The authors acknowledge and cordially thank the We are Wood Holzagentur GmbH who provided the wood raw material, and the Archroma Management GmbH who provided the modification chemicals.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Conflict of interest statement: None declared.

References

Ashari, A.J., Palfreyman, J.W., Wong, A.H.H. (1999) Association of contents of nitrogen and sugars in rubberwood (Hevea brasiliensis) clones with susceptibility to sapstain by Botryodiplodia theobromae, Aureobasidium pullulans and Aspergillus niger. In: Proceedings of the International Research Group on Wood Preservation, IRG/WP 99-10307. International Research Group on Wood Preservation, Rosenheim, Germany.Search in Google Scholar

Barcík, Š., Gašparík, M., Razumov, E.Y. (2015) Effect of thermal modification on the colour changes of oak wood. Wood Res. 60:385–396.Search in Google Scholar

Behr, G., Gellerich, A., Bollmus, S., Brinker, S., Militz, H. (2018) The influence of curing conditions on properties of melamine modified wood. Eur. J. Wood Wood Prod. 76:1263–1272.10.1007/s00107-018-1290-3Search in Google Scholar

Bollmus, S. Biologische und technologische Eigenschaften von Buchenholz nach einer Modifizierung mit 1,3-dimethylol-4, 5-dihydroxyethyleneurea (DMDHEU) [Biological and technological properties of European beech after treatment with 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU)]. PhD thesis. University of Goettingen, Goettingen, Germany, 2011.Search in Google Scholar

Breuer, A.K. Optimierung eines Heißdampftrocknungsprozesses für Holzvernetzung mit Buche [Optimisation of a superheated steam curing process for the modification of European beech wood]. Master thesis, University of Goettingen, Goettingen, Germany, 2008.Search in Google Scholar

Chauhan, S.S., Aggarwal, P., Karmarkar, A., Pandey, K.K. (2001) Moisture adsorption behaviour of esterified rubber wood (Hevea brasiliensis). Holz Roh-Werkst. 59:250–253.10.1007/s001070000152Search in Google Scholar

del Alamo-Sanza, M., Nevares, I. (2018) Oak wine barrel as an active vessel: a critical review of past and current knowledge. Crit. Rev. Food Sci. Nutr. 58:2711–2726.10.1080/10408398.2017.1330250Search in Google Scholar

Derham, B.R., Singh, T., Militz, H. (2017) Commercialisation of DMDHEU Modified Wood in Australasia. In: Proceedings of the International Research Group on Wood Preservation, IRG/WP/17-40772. International Research Group on Wood Preservation, Ghent, Belgium.Search in Google Scholar

Devi, R.R., Ali, I., Maji, T.K. (2003) Chemical modification of rubber wood with styrene in combination with a crosslinker: effect on dimensional stability and strength property. Bioresour. Technol. 88:185–188.10.1016/S0960-8524(03)00003-8Search in Google Scholar

Domone, P., Illston, J. Construction materials: their nature and behaviour. CRC Press, 2002.Search in Google Scholar

Dzurenda, L., Orlowski, K., Grzeskiewicz, M. (2010) Effect of thermal modification of oak wood on sawdust granularity. Drvna Ind. 61:89–94.Search in Google Scholar

Ehmcke, G., Grosser, D. (2014) Das Holz der Eiche–Eigenschaften und Verwendung [Oak wood–Properties and utilization]. LWF Wissen. 75:53–64.Search in Google Scholar

Emmerich, L. Holzmodifizierung von Kiefer (Pinus sylvestris L.) mit DMDHEU und modifizierten DMDHEU-Varianten im Vergleich [Comparative study on wood modification of Scots pine (Pinus sylvestris L.) with DMDHEU and modified DMDHEU]. Master thesis, University of Goettingen, Goettingen, Germany, 2016.Search in Google Scholar

Emmerich, L., Bollmus, S., Militz, H. (2019) Wood modification with DMDHEU (1,3-dimethylol-4,5-dihydroxyethyleneurea) – state of the art, recent research activities and future perspectives. Wood Mater. Sci. Eng. 14:3–18.10.1080/17480272.2017.1417907Search in Google Scholar

EN 350 (2016) Durability of wood and wood-based products – Testing and classification of the durability to biological agents of wood and wood-based materials. European Committee for Standardization (CEN), Brussels.Search in Google Scholar

EN 1534 (2011) Wood flooring – determination of resistance to indentation – test method. European Committee for Standardization (CEN), Brussels.Search in Google Scholar

EN ISO 3251 (2008) Paints, varnishes and plastics – determination of non-volatile-matter content. European Committee for Standardization (CEN), Brussels.Search in Google Scholar

Esteves, B., Pereira, H. (2008) Wood modification by heat treatment: a review. BioResources 4:370–404.10.15376/biores.4.1.EstevesSearch in Google Scholar

Forest Products Laboratory (1987) Wood handbook: wood as an engineering material. United States Government Printing. No. 72.Search in Google Scholar

Fromm, J.H., Sautter, I., Matthies, D., Kremer, J., Schumacher, P., Ganter, C. (2001) Xylem water content and wood density in spruce and oak trees detected by high-resolution computed tomography. Plant Physiol. 127:416–425.10.1104/pp.010194Search in Google Scholar

Gaff, M., Babiak, M., Kačík, F., Sandberg, D., Turčani, M., Hanzlík, P., Vondrová, V. (2019) Plasticity properties of thermally modified timber in bending–the effect of chemical changes during modification of European oak and Norway spruce. Compos Part B-Eng. 165:613–625.10.1016/j.compositesb.2019.02.019Search in Google Scholar

Hill, C.A.S. Wood Modification – Chemical, Thermal and Other Processes. John Wiley & Sons Ltd. England, West Sussex, 2006.10.1002/0470021748Search in Google Scholar

Hill, C.A.S. (2011) Wood modification: an update. BioResources 6:918–919.10.15376/biores.6.2.918-919Search in Google Scholar

Hill, C.A.S., Jones, D. (1996) The dimensional stabilisation of Corsican pine sapwood by reaction with carboxylic acid anhydrides. Holzforschung 50:457–462.10.1515/hfsg.1996.50.5.457Search in Google Scholar

Ibrahim, W.A., Ali, A.R.M. (1991) The effect of chemical treatments on the dimensional stability of oil palm stem and rubberwood. J. Trop. For. Sci. 3:291–298.Search in Google Scholar

Khalid, N.A., Ashaari, Z., Haniff, A.H.M., Mohamed, A., HuA, L.S. (2015) Treatability of oil palm frond and rubber wood chips with urea for the development of slow release fertilizer. J. Oil Palm Res. 27:220–228.Search in Google Scholar

Kielmann, B.C., Adamopoulos, S., Militz, H., Koch, G., Mai, C. (2014) Modification of three hardwoods with an N-methylol melamine compound and a metal-complex dye. Wood Sci. Technol. 48:123–136.10.1007/s00226-013-0595-ySearch in Google Scholar

Kostecki, J., Greinert, A., Drab, M., Wasylewicz, R., Szafraniec, M., Stodulski, G., Wypych, M. (2015) The total content of nitrogen in leaves and wood of trees growing in the area affected by the Glogow Copper Smelter. J. Elementol. 20:137–148.10.5601/jelem.2014.19.4.401Search in Google Scholar

Krause, A. Holzmodifizierung mit N-Methylolvernetzern [Wood modification with cross-linking N-methylol compounds]. PhD thesis, University of Goettingen, Goettingen, Germany, 2006.Search in Google Scholar

Krause, A., Jones, D., van der Zee, M.E., Militz, H. (2003) Interlace treatment – wood modification with N-methylol compounds. In: The First European Conference on Wood Modification.Search in Google Scholar

Leitch, C.E. Einfluss von ausgewählten Modifizierungssystemen auf elasto-mechanische Eigenschaften von Holz [Impact of selected modification systems on elasto-mechanical properties of wood]. Master thesis, University of Goettingen, Goettingen, Germany, 2016.Search in Google Scholar

Mahnert, K.C., Adamopoulos, S., Koch, G., Militz, H. (2013) Topochemistry of heat-treated and N-methylol melamine-modified wood of koto (Pterygota macrocarpa K. Schum.) and limba (Terminalia superba Engl. et. Diels). Holzforschung 67:137–146.10.1515/hf-2012-0017Search in Google Scholar

Mai, C. (2010) Review: Prozess der chemischen Holzmodifizierung – Stand der industriellen Entwicklung [Review: Chemical wood modification processes – State of the industrial development]. Holztechnol. 51:21–26.Search in Google Scholar

Meyer, L., Brischke, C., Welzbacher, C.R. (2011) Dynamic and static hardness of wood: method development and comparative studies. Int. Wood Prod. J. 2:5–11.10.1179/2042645311Y.0000000005Search in Google Scholar

Militz, H., Altgen, M. (2014) Processes and properties of thermally modified wood manufactured in Europe. In: Deterioration and Protection of Sustainable Biomaterials – ACS Symposium Series. Eds. Schultz, T.P., Goodell, B., Nicholas, D.D. Oxford University Press, Washington DC. 269–285.10.1021/bk-2014-1158.ch016Search in Google Scholar

Olaniran, S.O., Cabane, E., Rüggeberg, M. (2018) Preliminary studies on the effect of acetylation and subsequent weathering on tensile strength and stiffness of Rubberwood (Hevea brasiliensis). In: The 9th European Conference on Wood Modification.Search in Google Scholar

Pandey, K.K., Pitman, A.J. (2002) Weathering characteristics of modified rubber-wood (Hevea brasiliensis). J. Appl. Polym. Sci. 85:622–631.10.1002/app.10667Search in Google Scholar

Pandey, K.K., Srinivas, K. (2015) Performance of polyurethane coatings on acetylated and benzoylated rubberwood. Eur. J. Wood Wood Prod. 73:111–120.10.1007/s00107-014-0860-2Search in Google Scholar

PanReac AppliChem (2019) Kjeldahlsche Stickstoffbestimmung [Nitrogen determination according to the Kjeldahl method]. https://www.itwreagents.com/download_file/brochures/A173/de/A173_de.pdf (downloaded 2019-04-10).Search in Google Scholar

Rademacher, P., Bollmus, S., Stumpf, S., Dieste, A. BMBF-Verbundprojekt: Innovative, modifizierte Buchenholzprodukte: Teilvorhaben: Zusammenarbeit und Produktbeispiele mit den Industriepartnern FAHLENKAMP, VARIOTEC und BECKER [BMBF joint project: Innovative, modified beech wood products: Subproject: Cooperation and product development with the industry partners FAHLENKAMP, VARIOTEC and BECKER]. Final project report, University of Goettingen, Goettingen, Germany, 2009.Search in Google Scholar

Rafidah, K.S., Hill, C.A.S., Ormondroyd, G.A. (2006) Dimensional stabilization of rubber wood (Hevea brasiliensis) with acetic or hexanoic anhydride. J. Trop. For. Sci. 18:261–268.Search in Google Scholar

Sandberg, D., Kutnar, A., Mantanis, G. (2017) Wood modification technologies-a review. iForest 10:895–908.10.3832/ifor2380-010Search in Google Scholar

Schaffert, S. Steuerung und Optimierung von Holzvernetzungsprozessen [Process control and optimization of wood cross-linking processes]. PhD thesis, University of Goettingen, Goettingen, Germany, 2006.Search in Google Scholar

Sethuraj, M.R., Mathew, N.T. Natural Rubber: Biology, Cultivation and Technology. Vol. 23. Elsevier, The Netherlands, 2012.Search in Google Scholar

Severo, E.T.D., Calonego, F.W., Sansígolo, C.A., Bond, B. (2016) Changes in the chemical composition and decay resistance of thermally-modified Hevea brasiliensis wood. PLoS One 11:e0151353.10.1371/journal.pone.0151353Search in Google Scholar PubMed PubMed Central

Sint, K.M., Adamopoulos, S., Koch, G., Hapla, F., Militz, H. (2013) Impregnation of Bombax ceiba and Bombax insigne wood with a N-methylol melamine compound. Wood Sci. Technol. 47:43–58.10.1007/s00226-012-0482-ySearch in Google Scholar

Todaro, L., Dichicco, P., Moretti, N., D’Auria, M. (2013) Effect of combined steam and heat treatments on extractives and lignin in sapwood and heartwood of Turkey oak (Quercus cerris L.) wood. BioResources 8:1718–1730.10.15376/biores.8.2.1718-1730Search in Google Scholar

Wagenführ, R. Holzatlas. 6., neu bearbeitete und erweitere Auflage [Wood Atlas. 6th, revised and expanded edition]. Fachbuchverlag Leipzig im Carl Hanser Verlag, München, 2007.Search in Google Scholar

Wepner, F. Entwicklung eines Modifizierungsverfahrens für Buchenfurniere (Fagus sylvatica L.) auf Basis von zyklischen N-Methylol-Verbindungen [Development of a modification process for beech veneers (Fagus sylvatica L.) based on cyclic N-methylol compounds]. PhD thesis, University of Goettingen, Goettingen, Germany, 2006.Search in Google Scholar

Received: 2019-04-16
Accepted: 2020-01-10
Published Online: 2020-02-14
Published in Print: 2020-03-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hf-2019-0110/html
Scroll to top button