Startseite Nonlinear dielectric properties at oxide grain boundaries
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nonlinear dielectric properties at oxide grain boundaries

  • Dawn A. Bonnell EMAIL logo und Sergei V. Kalinin
Veröffentlicht/Copyright: 11. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The electric activity of grain boundaries in donor-doped SrTiO3 bicrystals is studied using a combination of variable temperature impedance spectroscopy, current–voltage measurements and scanning probe microscopy. The dominant transport mechanism changes from thermionic emission to diffusive at about 220 K. The temperature dependence of interface capacitance is interpreted in terms of field-dependent dielectric constant in the vicinity of the interfaces. Simplified expressions for the temperature dependences of interface potential, charge and capacitance for a weakly nonlinear dielectric are derived to describe the experiment. The complex nature of these materials requires incorporation of such effects as nonlinear polarization and multiple simultaneous transport mechanisms.


Prof. Dawn A. Bonnell Dept. of Materials Science and Engineering University of Pennsylvania 3231 Walnut St., Philadelphia, PA 19104, USA Tel.: +1 215 898 6231 Fax: +1 215 573 2128
Dedicated to Professor Dr. Dr. h. c. Manfred Rühle on the occasion of his 65th birthday

Funding statement: The authors acknowledge the financial support from DoE grant DE-FG02-00ER45813-A000 and illuminating discussions with G. Duscher (NCSU and ORNL).

References

[1] M.M. McGibbon, N.D. Browning, A.J. McGibbon, S.J. Pennycook: Phil. Mag. A 73 (1996) 625.10.1080/01418619608242987Suche in Google Scholar

[2] N.D. Browning, H.O. Moltaji, J.P. Buban: Phys. Rev. B 58 (1998) 8289.10.1103/PhysRevB.58.8289Suche in Google Scholar

[3] F. Ernst, O. Kienzle, M. Rühle: J. Eur. Ceram. Soc. 19 (1999) 665.10.1016/S0955-2219(98)00294-5Suche in Google Scholar

[4] N.D. Browning, S.J. Pennycook: J. Phys. D 29 (1996) 1779.10.1088/0022-3727/29/7/013Suche in Google Scholar

[5] K.D. Johnson, V.P. Dravid: Appl. Phys. Lett. 74 (1999) 621.10.1063/1.123184Suche in Google Scholar

[6] N.D. Browning, J.P. Buban, H.O. Moltaji, S.J. Pennycook, G. Duscher, K.D. Johnson, R.P. Rodrigues, V.P. Dravid: Appl. Phys. Lett. 74 (1999) 2638.10.1063/1.123922Suche in Google Scholar

[7] J. Fleig, S. Rodewald, J. Maier: Solid State Ionics 136–137 (2000) 905.Suche in Google Scholar

[8] S.V. Kalinin, D.A. Bonnell: Phys. Rev. B 62 (2000) 10419.10.1103/PhysRevB.62.10419Suche in Google Scholar

[9] I. Denk, J. Claus, J. Maier: J. Electrochem. Soc. 144 (1997) 3526.10.1149/1.1838044Suche in Google Scholar

[10] S.V. Kalinin, D.A. Bonnell: Appl. Phys. Lett. 78 (2001) 1306.10.1063/1.1350627Suche in Google Scholar

[11] S.V. Kalinin, D.A. Bonnell: J. Appl. Phys. 91 (2002) 832.10.1063/1.1427145Suche in Google Scholar

[12] N.D. Browning, S.J. Pennycook, M.F. Chisholm, M.M. McGibbon, A.J. McGibbon: Interface Sci. 2 (1995) 397.10.1007/BF00222626Suche in Google Scholar

[13] R. Feidenhans’l, A. Kazimirov, D.M. Smilgies, Q. Jiang, J. Zegenhagen: Phil. Mag. Lett. 78 (1998) 51.10.1080/095008398178255Suche in Google Scholar

[14] M. Kim, G. Duscher, N.D. Browning, K. Sohlberg, S.T. Pantelides, S.J. Pennycook: Phys. Rev. Lett. 86 (2001) 4056.10.1103/PhysRevLett.86.4056Suche in Google Scholar PubMed

[15] G.E. Pike, C.H. Seager: J. Appl. Phys. 50 (1979) 3414.10.1063/1.326334Suche in Google Scholar

[16] S.V. Kalinin: Ph. D. Thesis, University of Pennsylvania, Philadelphia PA (2002).Suche in Google Scholar

[17] S.V. Kalinin, D.A. Bonnell: To be publishedSuche in Google Scholar

[18] J.R. Macdonald (Ed.): Impedance Microscopy: Emphasizing Solid Materials and Systems, John Wiley, New York (1987).Suche in Google Scholar

[19] J. Petzelt, T. Ostapchuk, I. Gregora et al.: Phys. Rev. B 64 (2001) 184111.10.1103/PhysRevB.64.184111Suche in Google Scholar

[20] K.-H. Hellwege, A.M. Hellwege (Eds.): Ferroelectrics and Related Substances: Oxides, Landolt–Börnstein New Series, Vol. 16a, Springer-Verlag, New York (1981).Suche in Google Scholar

[21] H.-M. Christen, J. Mannhart, E.J. Williams, Ch. Gerber: Phys. Rev. B 49 (1994) 12096.Suche in Google Scholar

[22] M.A. Saifi, L.E. Cross: Phys. Rev. B 2 (1970) 677.10.1103/PhysRevB.2.677Suche in Google Scholar

[23] R.A. Van der Berg, P.W.M. Blom, J.F.M. Cillessen, R.M. Wolf: Appl. Phys. Lett. 66 (1995) 697.10.1063/1.114103Suche in Google Scholar

[24] A. Nayfeh: Introduction to Perturbation Techniques, John Wiley, New York (1981).Suche in Google Scholar

Received: 2002-09-19
Published Online: 2022-01-11

© 2003 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. The role of oxidation-induced cavities on the failure of the thermally grown oxide on binary β-NiAl alloys
  6. Phase stability of Y + Gd co-doped zirconia
  7. Mechanisms governing the distortion of alumina-forming alloys upon cyclic oxidation
  8. High-temperature oxidation of FeCrAl alloys: the effect of Mg incorporation into the alumina scale
  9. Nonlinear dielectric properties at oxide grain boundaries
  10. TEM observations of singular grain boundaries and their roughening transition in TiO2-excess BaTiO3
  11. Processing of dense MgO substrates for high-temperature superconductors
  12. Microwave-induced crystallization of polysilazane-derived silicon carbonitride
  13. Schottky barrier formation in liquid-phase-sintered silicon carbide
  14. SrTiO3: a model electroceramic
  15. Optical properties and electronic structure of oxidized and reduced single-crystal strontium titanate
  16. Spreading of liquid Ag and Ag–Mo alloys on molybdenum substrates
  17. Nanoalloying in mixed AgmAun nanowires
  18. Never ending saga of a simple boundary
  19. Comparison of interfacial chemistry at Cu/α-alumina and Cu/γ-alumina interfaces
  20. Microstructure of Cu2O/Si interfaces, made by epitaxial electrodeposition
  21. Metal/oxide interfaces and their reaction with hydrogen
  22. Amorphous films at metal/ceramic interfaces
  23. Some thoughts on source monochromation and the implications for electron energy loss spectroscopy
  24. Determination of the contrast transfer function by analysing diffractograms of thin amorphous foils
  25. Progress in the preparation of cross-sectional TEM specimens by ion-beam thinning
  26. Quantification of interfacial segregation by analytical electron microscopy
  27. Quantification of elemental segregation to lath and grain boundaries in low-alloy steel by STEM X-ray mapping combined with the ζ-factor method
  28. Microstructure of Al/Ti metallization layers
  29. Connectivity of CSL grain boundaries and the role of deviations from exact coincidence
  30. Effect of laser shock processing on the microstructure and mechanical properties of pure Cu
  31. Growth and microstructure of iron nitride layers and pore formation in ε-Fe3N
  32. Phase diagram of the Al–Cu–Fe quasicrystal-forming alloy system
  33. Notifications/Mitteilungen
  34. Personal/Personelles
  35. Gesellschaftsnachricht
  36. International Conferences
Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2003-0038/html
Button zum nach oben scrollen