Abstract
When BaTiO3 powder compacts with 0.2 mol% excess TiO2 are sintered in air at 1250 °C, below the eutectic temperature, some grains grow abnormally to very large sizes with double twins in the 〈111〉 directions at their centers. The abnormal grains, elongated in the 〈111〉 directions, form mostly straight grain boundaries, lying on their {111} planes with the fine matrix grains. Some grain boundaries between the nearly (111) face of an abnormal grain and the matrix grains are faceted with some facet planes lying on either the (111) plane of the abnormal grain or (210) plane of the matrix grain. These flat grain boundaries, as observed by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), must be singular, corresponding to cusps in the polar plots of the grain boundary energy against the boundary normal. A schematic analysis with the capillarity vectors shows that the straight {111} grain boundaries across the triple junctions with the matrix grains are consistent with their singular characteristics. When the specimen is heat-treated further in hydrogen atmosphere, the flat {111} grain boundaries and the faceted grain boundaries between the abnormal grain and the matrix grains become curved when observed under TEM and HRTEM. The singular grain boundaries thus become rough in hydrogen. The results represent a direct observation of the grain boundary roughening transition, which appears to be analogous to the roughening transitions of crystal surfaces.
Funding statement: This work was supported by the National Research Laboratory (NRL) Programme of the Ministry of Science and Technology in Korea. Two of the authors (S. B. L. and D. Y. Y.) are grateful to the Alexander von Humboldt Foundation for the support.
References
[1] W.K. Burton, N. Cabrera: Disc. Faraday Soc. 5 (1949) 33.10.1039/df9490500033Suche in Google Scholar
[2] W.K. Burton, N. Cabrera, F.C. Frank: Phil. Trans. Roy. Soc. London A 243 (1951) 299.10.1098/rsta.1951.0006Suche in Google Scholar
[3] F.C. Frank, in: W.D. Robertson, N.A. Gjostein (Eds.), Metal Surfaces: Structure, Energetics and Kinetics, American Society for Metals, Metals Park, OH (1963) 1.Suche in Google Scholar
[4] J.D. Weeks, in: T. Riste (Ed.), Ordering in Strongly Fluctuating Condensed Matter Systems, Plenum, New York (1980) 293.10.1007/978-1-4684-3626-6_21Suche in Google Scholar
[5] H. van Beijeren, I. Nolden, in: W. Schommers, P. von Blanckenhagen (Eds.), Structure and Dynamics of Surfaces II: Phenomena, Models and Methods, Springer-Verlag, Berlin (1987) 259.10.1007/978-3-642-46591-8_7Suche in Google Scholar
[6] M. Wortis, in: R. Banselow, R.F. Howe (Eds.), Chemistry and Physics of Solid Surfaces VII, Springer-Verlag, Berlin (1987) 367.10.1007/978-3-642-73902-6_13Suche in Google Scholar
[7] E.H. Conrad: Prog. Surf. Sci. 39 (1992) 65.10.1016/0079-6816(92)90006-4Suche in Google Scholar
[8] Y. He, C. Jayaprakash, C. Rottman: Phys. Rev. B 32 (1985) 12.10.1103/PhysRevB.32.12Suche in Google Scholar
[9] C. Herring: Phys. Rev. 82 (1951) 87.10.1103/PhysRev.82.87Suche in Google Scholar
[10] E.W. Hart, in: H. Hu (Ed.), The Nature and Behavior of Grain Boundaries, Plenum Press, New York (1972) 155.10.1007/978-1-4757-0181-4_6Suche in Google Scholar
[11] G. Ciccotti, M. Guillopé, V. Pontikis: Phys. Rev. B 27 (1983) 5576.10.1103/PhysRevB.27.5576Suche in Google Scholar
[12] T. Nguyen, P.S. Ho, T. Kwok, C. Nitta, S. Yip: Phy. Rev. Lett. 57 (1986) 1919.10.1103/PhysRevLett.57.1919Suche in Google Scholar
[13] C. Rottman: Phy. Rev. Lett. 57 (1986) 735.10.1103/PhysRevLett.57.735Suche in Google Scholar
[14] T.E. Hsieh, R.W. Balluffi: Acta metall. 37 (1989) 2133.10.1016/0001-6160(89)90138-7Suche in Google Scholar
[15] S.B. Lee, N.M. Hwang, D.Y. Yoon, M.F. Henry: Metall. Mater. Trans. A 31 (2000) 985.10.1007/s11661-000-1016-zSuche in Google Scholar
[16] S.B. Lee, D.Y. Yoon, M.F. Henry: Acta mater. 48 (2000) 3071.10.1016/S1359-6454(00)00119-1Suche in Google Scholar
[17] J.S. Choi, D.Y. Yoon: ISIJ Int. 41 (2001) 478.10.2355/isijinternational.41.478Suche in Google Scholar
[18] K.H. Westmacott, U. Dahmen, in: C.S. Pande, B.B. Rath, D.A. Smith (Eds.), Interfaces: Structure and Properties, Trans Tech Publications, Ueticon-Zürich (1993) 133.Suche in Google Scholar
[19] C.W. Park: Ph. D. Thesis, Korea Advanced Institute of Science and Technology, Taejon (2000).Suche in Google Scholar
[20] B.K. Lee, S.Y. Chung; S.-J.L. Kang: Acta mater. 48 (2000) 1575.10.1016/S1359-6454(99)00434-6Suche in Google Scholar
[21] H. Schmelz, A. Meyer: Ceram. Forum Int. 59 (1982) 436.Suche in Google Scholar
[22] H. Schmelz, H. Thomann: Ber. Dtsch. Keram. Ges. 61 (1984) 199.Suche in Google Scholar
[23] B.K. Lee, S.Y. Chung, S.-J.L. Kang: J. Am. Ceram. 83 (2000) 2858.10.1111/j.1151-2916.2000.tb01645.xSuche in Google Scholar
[24] B.K. Lee, S.-J.L. Kang: Acta mater. 49 (2001) 1373.10.1016/S1359-6454(01)00038-6Suche in Google Scholar
[25] C. Herring, in: R. Gomer, C.S. Smith (Eds.), Structure and Properties of Solid Surface, University of Chicago Press, Chicago, IL (1952) 5.Suche in Google Scholar
[26] D.W. Hoffman, J.W. Cahn: Surf. Sci. 31 (1972) 368.10.1016/0039-6028(72)90268-3Suche in Google Scholar
[27] A.H. King, in: H. Weiland, B.L. Adams, A.D. Rollett (Eds.), Grain Growth in Polycrystalline Materials III, Proc. 3rd Int. Conf. on Grain Growth, TMS, Warrendale, PA (1988) 333.Suche in Google Scholar
[28] J.W. Cahn, D.W. Hoffman: Acta metall. 22 (1974) 1205.10.1016/0001-6160(74)90134-5Suche in Google Scholar
[29] T. Yamamoto, Y. Ikugara, K. Hayashi, T. Sakuma: J. Mater. Res. 13 (1988) 3449.10.1557/JMR.1998.0469Suche in Google Scholar
[30] T.Yamamoto: Br. Ceram. Trans. 94 (1995) 196.Suche in Google Scholar
[31] A.M. Donald, L.M. Brown: Acta metall. 27 (1979) 59.10.1016/0001-6160(79)90056-7Suche in Google Scholar
[32] T.G. Ference, R.W. Balluffi: Scripta metall. 22 (1988) 1929.10.1016/S0036-9748(88)80240-0Suche in Google Scholar
[33] L.S. Chang, E. Rabkin, B.B. Straumal, P. Lejcek, S. Hoffmann, W. Gust: Scripta mater. 37 (1997) 729; L.S. Chang, E. Rabkin, B.B. Straumal, B. Baretzky, W. Gust: Acta mater. 47 (1999) 4041.10.1016/S1359-6462(97)00171-1Suche in Google Scholar
[34] J.R. Rellick, C.J. McMahon, H.L. Marcus, P.W. Palmberg: Metall. Trans. 2 (1971) 1492.10.1007/BF02662692Suche in Google Scholar
[35] C. Pichard, J. Rieu, C. Goux: Mém. Sci. Rev. Métall. 70 (1973) 13.Suche in Google Scholar
[36] G. Henry, J. Plateau, X. Waché, M. Gerber, I. Behar, C. Crussard: Mém. Sci. Rev. Métall. 56 (1959) 417.Suche in Google Scholar
[37] J.B. Koo, D.Y. Yoon: Metall. Mater. Trans. A 32 (2001) 469.10.1007/s11661-001-0063-4Suche in Google Scholar
[38] C.W. Park, D.Y. Yoon: J. Am. Ceram. Soc. 83 (2000) 2605.10.1111/j.1151-2916.2000.tb01596.xSuche in Google Scholar
[39] M.A. Gülgün, V. Putlayev, M. Rühle: J. Am. Ceram. Soc. 82 (1999) 1849.10.1111/j.1151-2916.1999.tb02008.xSuche in Google Scholar
[40] C.W. Park: Personal communication (2000).Suche in Google Scholar
[41] M. Guttmann: Metall. Trans. A 8 (1977) 1383.10.1007/BF02642852Suche in Google Scholar
[42] J.M. Penisson: J. Physique Colloq. 49 (1985) C5–39.Suche in Google Scholar
[43] K.L. Merkle, D. Wolf: Phil. Mag. A 65 (1992) 513.10.1080/01418619208201536Suche in Google Scholar
[44] H. Ichinose, Y. Ishida: J. Physique Colloq. 46 (1985) C4–39.10.1051/jphyscol:1985403Suche in Google Scholar
[45] D. Wolf, K.L. Merkle, in: D. Wolf, S. Yip (Eds.), Materials Interfaces, Chapman & Hall, London (1992) 87.Suche in Google Scholar
[46] P. Lagarde, M. Biscondi: Can. Metall. Quart. 13 (1974) 245.10.1179/cmq.1974.13.1.245Suche in Google Scholar
[47] P. Lagarde, M. Biscondi: Mém. Sci. Rev. Métall. 71 (1974) 121.Suche in Google Scholar
[48] A.N. Aleshin, B.S. Bokstein, L.S. Shvindlerman: Fizika Tverdogo Tela 19 (1977) 3511.Suche in Google Scholar
[49] A.N. Aleshin, B.S. Bokstein, A.L. Petelin, L.S. Shvindlerman: Metallofizika 2 (1980) 83.Suche in Google Scholar
[50] T. Watanabe, S.I. Kimura, S. Karashima: Phil. Mag. A 49 (1984) 845.10.1080/01418618408236566Suche in Google Scholar
[51] A.N. Aleshin, S.I. Prokofjev, L.S. Shvindlerman: Scripta metall. 19 (1985) 1135.10.1016/0036-9748(85)90223-6Suche in Google Scholar
© 2003 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- Articles/Aufsätze
- The role of oxidation-induced cavities on the failure of the thermally grown oxide on binary β-NiAl alloys
- Phase stability of Y + Gd co-doped zirconia
- Mechanisms governing the distortion of alumina-forming alloys upon cyclic oxidation
- High-temperature oxidation of FeCrAl alloys: the effect of Mg incorporation into the alumina scale
- Nonlinear dielectric properties at oxide grain boundaries
- TEM observations of singular grain boundaries and their roughening transition in TiO2-excess BaTiO3
- Processing of dense MgO substrates for high-temperature superconductors
- Microwave-induced crystallization of polysilazane-derived silicon carbonitride
- Schottky barrier formation in liquid-phase-sintered silicon carbide
- SrTiO3: a model electroceramic
- Optical properties and electronic structure of oxidized and reduced single-crystal strontium titanate
- Spreading of liquid Ag and Ag–Mo alloys on molybdenum substrates
- Nanoalloying in mixed AgmAun nanowires
- Never ending saga of a simple boundary
- Comparison of interfacial chemistry at Cu/α-alumina and Cu/γ-alumina interfaces
- Microstructure of Cu2O/Si interfaces, made by epitaxial electrodeposition
- Metal/oxide interfaces and their reaction with hydrogen
- Amorphous films at metal/ceramic interfaces
- Some thoughts on source monochromation and the implications for electron energy loss spectroscopy
- Determination of the contrast transfer function by analysing diffractograms of thin amorphous foils
- Progress in the preparation of cross-sectional TEM specimens by ion-beam thinning
- Quantification of interfacial segregation by analytical electron microscopy
- Quantification of elemental segregation to lath and grain boundaries in low-alloy steel by STEM X-ray mapping combined with the ζ-factor method
- Microstructure of Al/Ti metallization layers
- Connectivity of CSL grain boundaries and the role of deviations from exact coincidence
- Effect of laser shock processing on the microstructure and mechanical properties of pure Cu
- Growth and microstructure of iron nitride layers and pore formation in ε-Fe3N
- Phase diagram of the Al–Cu–Fe quasicrystal-forming alloy system
- Notifications/Mitteilungen
- Personal/Personelles
- Gesellschaftsnachricht
- International Conferences
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- Articles/Aufsätze
- The role of oxidation-induced cavities on the failure of the thermally grown oxide on binary β-NiAl alloys
- Phase stability of Y + Gd co-doped zirconia
- Mechanisms governing the distortion of alumina-forming alloys upon cyclic oxidation
- High-temperature oxidation of FeCrAl alloys: the effect of Mg incorporation into the alumina scale
- Nonlinear dielectric properties at oxide grain boundaries
- TEM observations of singular grain boundaries and their roughening transition in TiO2-excess BaTiO3
- Processing of dense MgO substrates for high-temperature superconductors
- Microwave-induced crystallization of polysilazane-derived silicon carbonitride
- Schottky barrier formation in liquid-phase-sintered silicon carbide
- SrTiO3: a model electroceramic
- Optical properties and electronic structure of oxidized and reduced single-crystal strontium titanate
- Spreading of liquid Ag and Ag–Mo alloys on molybdenum substrates
- Nanoalloying in mixed AgmAun nanowires
- Never ending saga of a simple boundary
- Comparison of interfacial chemistry at Cu/α-alumina and Cu/γ-alumina interfaces
- Microstructure of Cu2O/Si interfaces, made by epitaxial electrodeposition
- Metal/oxide interfaces and their reaction with hydrogen
- Amorphous films at metal/ceramic interfaces
- Some thoughts on source monochromation and the implications for electron energy loss spectroscopy
- Determination of the contrast transfer function by analysing diffractograms of thin amorphous foils
- Progress in the preparation of cross-sectional TEM specimens by ion-beam thinning
- Quantification of interfacial segregation by analytical electron microscopy
- Quantification of elemental segregation to lath and grain boundaries in low-alloy steel by STEM X-ray mapping combined with the ζ-factor method
- Microstructure of Al/Ti metallization layers
- Connectivity of CSL grain boundaries and the role of deviations from exact coincidence
- Effect of laser shock processing on the microstructure and mechanical properties of pure Cu
- Growth and microstructure of iron nitride layers and pore formation in ε-Fe3N
- Phase diagram of the Al–Cu–Fe quasicrystal-forming alloy system
- Notifications/Mitteilungen
- Personal/Personelles
- Gesellschaftsnachricht
- International Conferences