Startseite Processing of dense MgO substrates for high-temperature superconductors
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Processing of dense MgO substrates for high-temperature superconductors

  • S. Köbel , D. Schneider und L. J. Gauckler EMAIL logo
Veröffentlicht/Copyright: 11. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Sintering of magnesium oxide ceramics to high density requires high temperatures (1500–1800 °C), resulting in coarse-grained microstructures, or additives that promote sintering. An alternative is to use a fine-grained MgO starting powder with an impurity level < 1 % that allows appropriate processing conditions. Here, we report about processing by slip casting, resulting in ceramic green bodies that can be sintered to closed porosity at 1600 °C. X-ray diffraction and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy showed that the sintered bodies are single-phase. The process described here is suitable to sinter large substrates up to 200 mm × 200 mm and 96 % of the theoretical density with closed porosity. The MgO substrates are suitable for partial melt processing of high-quality Bi-2212 thick films.


Prof. Dr. L. J. Gauckler ETH Zuerich, Nonmetallic Materials Sonneggstr. 5, CH-8092 Zuerich, Switzerland Tel.: +41 1 632 56 46 Fax: +41 1 632 11 32
Dedicated to Professor Dr. Dr. h. c. Manfred Rühle on the occasion of his 65th birthday

Funding statement: The authors gratefully acknowledge financial support by the Swiss Priority Program in Materials Research (PPM).

References

[1] R. Müller, M. Cantoni, L.J. Gauckler: Physica C 243 (1995) 103.10.1016/0921-4534(94)02456-1Suche in Google Scholar

[2] C.J. Rawn, R.S. Roth, B.P. Burton, M.D. Hill: J. Am. Ceram. Soc. 77 (1994) 2173.10.1111/j.1151-2916.1994.tb07114.xSuche in Google Scholar

[3] E.M. McCarron III, M.A. Subramanian, J.C. Calabrese, R.L. Harlow: Mat. Res. Bull. 23 (1988) 1355.10.1016/0025-5408(88)90124-9Suche in Google Scholar

[4] B.J. Reardon, C.R. Hubbard: Powder Diff. 7 (1992) 142.10.1017/S0885715600018492Suche in Google Scholar

[5] K. Davies, R. Jenkins, C. Danjoy, C.R.M. Grovenor, H. Jones: Appl. Superconductivity 2 (1994) 61.10.1016/0964-1807(94)90055-8Suche in Google Scholar

[6] M.J. Naylor, C.R.M. Grovenor: IEEE Trans. Appl. Supercond. 9 (1999) 1860.10.1109/77.784820Suche in Google Scholar

[7] J.M. Viera, R.J. Brook: J. Am. Ceram. Soc. 67 (1984) 450.10.1111/j.1151-2916.1984.tb19632.xSuche in Google Scholar

[8] S.D. Stoddard, A.G. Allison: Ceram. Bull. 37 (1958) 409.Suche in Google Scholar

[9] W.G. Garrett, L.S. Williams: J. Am. Ceram. Soc. 43 (1960) 114.10.1111/j.1151-2916.1960.tb13649.xSuche in Google Scholar

[10] R.F. Mehl, J.L. Whitten, D.P. Smith: Ind. Eng. Chem. 17 (1925) 1171.10.1021/ie50191a031Suche in Google Scholar

[11] E. Schlegel, T. Schwab: Silikattechnik 17 (1966) 10.Suche in Google Scholar

[12] C.A. Lalor, D.N. Phillips, I.D. Alecu, R.J. Stead, in: C. Galassi (Ed.), Fourth Euro-Ceramics Conf., Riccione, Italy, October 2–6, 1995, Vol. 1, Faenza Editrice, Faenza (1996) 459.Suche in Google Scholar

[13] N.B. Kelly, D.N. Phillips, I.D. Alecu, R.J. Stead: Brit. Ceram. Trans. 97 (1998) 130.Suche in Google Scholar

[14] W.D. Kingery, in: W.D. Kingery (Ed.), Ceramic Fabrication Processes, MIT Press, Cambridge, Mass. (1963) 55.Suche in Google Scholar

[15] D.W. Richerson: Modular Ceramic Engineering: Properties, Processing and Use in Design, Marcel Dekker Inc., New York (1992) 545.Suche in Google Scholar

[16] U. Eisele, in: R.W. Cahn (Ed.), Materials Science and Technology, Vol. 17, VCH Publishers Inc., Weinheim (1996) 83.Suche in Google Scholar

[17] S.J. Bennison, M.P. Harmer: J. Am. Ceram. Soc. 68 (1985) 591.10.1111/j.1151-2916.1985.tb16161.xSuche in Google Scholar

Received: 2002-12-03
Published Online: 2022-01-11

© 2003 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. The role of oxidation-induced cavities on the failure of the thermally grown oxide on binary β-NiAl alloys
  6. Phase stability of Y + Gd co-doped zirconia
  7. Mechanisms governing the distortion of alumina-forming alloys upon cyclic oxidation
  8. High-temperature oxidation of FeCrAl alloys: the effect of Mg incorporation into the alumina scale
  9. Nonlinear dielectric properties at oxide grain boundaries
  10. TEM observations of singular grain boundaries and their roughening transition in TiO2-excess BaTiO3
  11. Processing of dense MgO substrates for high-temperature superconductors
  12. Microwave-induced crystallization of polysilazane-derived silicon carbonitride
  13. Schottky barrier formation in liquid-phase-sintered silicon carbide
  14. SrTiO3: a model electroceramic
  15. Optical properties and electronic structure of oxidized and reduced single-crystal strontium titanate
  16. Spreading of liquid Ag and Ag–Mo alloys on molybdenum substrates
  17. Nanoalloying in mixed AgmAun nanowires
  18. Never ending saga of a simple boundary
  19. Comparison of interfacial chemistry at Cu/α-alumina and Cu/γ-alumina interfaces
  20. Microstructure of Cu2O/Si interfaces, made by epitaxial electrodeposition
  21. Metal/oxide interfaces and their reaction with hydrogen
  22. Amorphous films at metal/ceramic interfaces
  23. Some thoughts on source monochromation and the implications for electron energy loss spectroscopy
  24. Determination of the contrast transfer function by analysing diffractograms of thin amorphous foils
  25. Progress in the preparation of cross-sectional TEM specimens by ion-beam thinning
  26. Quantification of interfacial segregation by analytical electron microscopy
  27. Quantification of elemental segregation to lath and grain boundaries in low-alloy steel by STEM X-ray mapping combined with the ζ-factor method
  28. Microstructure of Al/Ti metallization layers
  29. Connectivity of CSL grain boundaries and the role of deviations from exact coincidence
  30. Effect of laser shock processing on the microstructure and mechanical properties of pure Cu
  31. Growth and microstructure of iron nitride layers and pore formation in ε-Fe3N
  32. Phase diagram of the Al–Cu–Fe quasicrystal-forming alloy system
  33. Notifications/Mitteilungen
  34. Personal/Personelles
  35. Gesellschaftsnachricht
  36. International Conferences
Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2003-0040/html
Button zum nach oben scrollen