Startseite Microstructural effects of isothermal aging on a doped SAC solder alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microstructural effects of isothermal aging on a doped SAC solder alloy

  • Lahouari Benabou , Laurent Vivet , Quang Bang Tao und Ngoc Hai Tran
Veröffentlicht/Copyright: 18. Dezember 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An Sn–Ag–Cu based solder alloy, including Ni, Bi and Sb additives, is investigated in this study under isothermal aging conditions. Shear creep tests are conducted on different aged solder joints with copper substrate, giving the creep resistance evolution with aging time. Microscopy analyses reveal the limited growth of the Cu-rich intermetallic layer due to the Ni content and allow for determination of the time-dependent growth of the Sn-rich intermetallic layer. The aged specimens also exhibit a partial dynamically recrystallized microstructure after creep deformation and a brittle-to-ductile fracture transition is found with occurrence of intergranular cracking in the joint.


*Correspondence address, Dr. Lahouari Benabou, Laboratoire d'Ingénierie des Systèmes de Versailles, Université de Versailles Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis, Versailles 78035, France, Tel.: +33-139254212, E-mail:

References

[1] G.Y.Li, B.L.Chen, X.Q.Shi, S.C.K.Wong, Z.F.Wang: Thin Solid Films504 (2006) 421. 10.1016/j.tsf.2005.09.060Suche in Google Scholar

[2] A.E.Hammad: Mater. Des.50 (2013) 108. 10.1016/j.matdes.2013.03.010Suche in Google Scholar

[3] M.H.Mahdavifard, M.F.M.Sabri, D.A.Shnawah, S.M.Said, I.A.Badruddin, S.Rozali: Microelectron. Reliab.55 (2015) 1886. 10.1016/j.microrel.2015.06.134Suche in Google Scholar

[4] Q.B.Tao, L.Benabou, V.N.Le, H.Hwang, D.B.Luu: J. Alloys Compd.694 (2017) 892. 10.1016/j.jallcom.2016.10.025Suche in Google Scholar

[5] T.Laurila, V.Vuorinen, J.K.Kivilahti: Mater. Sci. Eng.R49 (2005) 1. 10.1016/j.mser.2005.03.001Suche in Google Scholar

[6] S.Kumar, C.A.Handwerker, A.D.Mysore: J. Phase Equilib. Diff.32 (2011) 309. 10.1007/s11669-011-9907-9Suche in Google Scholar

[7] Q.B.Tao, L.Benabou, L.Vivet, K.L.Tan, J.M.Morelle, V.N.Le, F.B.Ouezdou: P. I. Mech. Eng. C-J. Mech. (2016). 10.1177/0954406216654728Suche in Google Scholar

[8] W.S.Rasband: Image J, U. S. National Institutes of Health, Bethesda, Maryland, USA.Suche in Google Scholar

[9] T.An, F.Qin: Microelectron. Reliab.54 (2014) 932. 10.1016/j.microrel.2014.01.008Suche in Google Scholar

[10] V.Vuorinen, T.Laurila, T.Mattila, E.Heikinheimo, J.K.Kivilahti: J. Electron. Mater.36 (2007) 1355. 10.1007/s11664-007-0251-0Suche in Google Scholar

[11] P.Kumar, Z.Huang, I.Dutta, R.Sidhu, M.Renavikar, R.Mahajan: J. Electron. Mater.41 (2012) 10.1007/s11664-011-1806-7Suche in Google Scholar

[12] Y.Yang, H.Lu, C.Yu, Y.Li: Microelectron. Reliab.51 (2011) 2314. 10.1016/j.microrel.2011.06.026Suche in Google Scholar

Received: 2017-04-29
Accepted: 2017-08-09
Published Online: 2017-12-18
Published in Print: 2018-01-09

© 2018, Carl Hanser Verlag, München

Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111578/pdf
Button zum nach oben scrollen