Startseite FSW of bimodal reinforced Al-based composites produced via spark plasma sintering
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

FSW of bimodal reinforced Al-based composites produced via spark plasma sintering

  • Behzad Sadeghi , Morteza Shamanian , Fakhreddin Ashrafizadeh und Pasquale Cavaliere
Veröffentlicht/Copyright: 25. November 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Metal-matrix composites produced via spark plasma sintering are characterized by enhanced mechanical and microstructural properties. Obviously, the material behavior is strongly related to the reinforcement properties, in particular the reinforcement shape. The present paper is aimed at showing the friction stir welding of Al-based composites reinforced with different percentages of nano (2%) and microsized (8%) alumina particles. The joints, microstructural and mechanical properties were evaluated as a function of the different processing parameters such as rotating and advancing speeds of the tool. The joint evolution was related to the heat input during welding. The welded material fracture behavior showed different types of rupture compared to the spark plasma sintered material.


*Correspondence address, Prof. Pasquale Cavaliere, Department of Innovation Engineering, University of Salento, Via per Arnesano, Lecce 73100, Italy, Tel.: +390832297357, Fax: +390832297357, E-mail:

References

[1] E.Ghasali, M.Alizadeh, T.Ebadzadeh: J. Alloys Compd.655 (2016) 93. 10.1016/j.jallcom.2015.09.024Suche in Google Scholar

[2] E.Ghasali, A.Pakseresht, A.Rahbari, H.Eslami-shahed, M.Alizadeh, T.Ebadzadeh: J. Alloys Compd.666 (2016) 366. 10.1016/j.jallcom.2016.01.118Suche in Google Scholar

[3] C.Wolff, S.Mercier, H.Couque, A.Molinari: Mech. Mater.49 (2012) 72. 10.1016/j.mechmat.2011.12.002Suche in Google Scholar

[4] Z-F.Liu, Z-H.Zhang, J-F.Lu, A.V.Korznikov, E.Korznikova, F-C.Wang: Mater. Des.64 (2014) 625. 10.1016/j.matdes.2014.08.030Suche in Google Scholar

[5] Z.A.Munir, D.V.Quach, M.Ohyanagi: J. Am. Ceram. Soc.94 (2011) 1. 10.1111/j.1551-2916.2010.04210.xSuche in Google Scholar

[6] K.L.Firestein, S.Corthay, A.E.Steinman, A.T.Matveev, A.M.Kovalskii, I.V.Sukhorukova, D.Golberg, D.V.Shtansky: Mater. Sci. Eng. A681 (2017) 1, 10.1016/j.msea.2016.11.011.10.1016/j.msea.2016.11.011Suche in Google Scholar

[7] S.Mula, K.Mondal, S.Ghosh, S.K.Pabi: Mater. Sci. Eng. A527 (2010) 3757. 10.1016/j.msea.2010.03.068Suche in Google Scholar

[8] J.Zhang, H.Shi, M.Cai, L.Liu, P.Zhai: Mater. Sci. Eng.A527 (2009) 218.10.1016/j.msea.2009.08.067Suche in Google Scholar

[9] G.A.Sweet, M.Brochu, R.L.HexemerJr., I.W.Donaldson, D.P.Bishop: Mater. Sci. Eng.A648 (2015) 123.10.1016/j.msea.2015.09.027Suche in Google Scholar

[10] W.Daoush, A.Francis, Y.Lin, R.German: J. Alloys Compd.622 (2015) 458. 10.1016/j.jallcom.2014.10.066Suche in Google Scholar

[11] Z.Sadeghian, B.Lotfi, M.H.Enayati, P.Beiss: J. Alloys Compd.509 (2011) 7758. 10.1016/j.jallcom.2011.04.145Suche in Google Scholar

[12] K.Mizuuchi, K.Inoue, Y.Agari, T.Nagaoka, M.Sugioka, M.Tanaka, T.Takeuchi, J.Tani, M.Kawahara, Y.Makino, M.Ito: Composites Part B43 (2012) 1557. 10.1016/j.compositesb.2011.06.017Suche in Google Scholar

[13] A.Elrefaey, K.Anders, H.Kilian, F.Ellermann, W.Kulein: Welding Int.93 (2014) 451.Suche in Google Scholar

[14] M.Saeidi, R.A.Behnagh, B.Manafi, M.F.Niko, M.K.B.Givi: J. Mater. Des. Appl.10.1177/1464420715572235Suche in Google Scholar

[15] Q.Zhang, B.L.Xiao, Q.Z.Wang, Z.Y.Ma: Mater. Lett.65 (2011) 2070. 10.1016/j.matlet.2011.04.030Suche in Google Scholar

[16] F.Khodabakhshi, A.Simchi, A.H.Kokabi, A.P.Gerlich: Mater. Sci. Eng.A666 (2016) 225.10.1016/j.msea.2016.04.078Suche in Google Scholar

[17] B.Sadeghi, M.Shamanian, F.Ashrafizadeh, P.Cavaliere, M.Sanayei, J.Szpunar: Int. J. Adv. Manuf. Tech.10.1007/s00170-017-1144-xSuche in Google Scholar

[18] D.Hitchcock, R.Livingston, D.Liebenberg: J. Appl. Phys.117 (2015) 174505. 10.1063/1.4919814Suche in Google Scholar

[19] B.Kieback, A review of spark plasma sintering, Proceedings of the Hagen Symposium, Hagen, Germany, 2011.Suche in Google Scholar

[20] J.Garay: Annu. Rev. Mater. Res.40 (2010) 445. 10.1146/annurev-matsci-070909-104433Suche in Google Scholar

[21] M.T.Khorshid, S.J.Jahromi, M.Moshksar: Mater. Des.31 (2010) 3880. 10.1016/j.matdes.2010.02.047Suche in Google Scholar

[22] N.K.Babu, K.Kallip, M.Leparoux, K.A.AlOgab, X.Maeder, Y.A. RojasDasilva: Mater. Des.95 (2016) 534. 10.1016/j.matdes.2016.01.138Suche in Google Scholar

[23] C.Leon, G.Rodriguez-Ortiz, E.Aguilar-Reyes: Mater. Sci. Eng. A526 (2009) 106. 10.1016/j.msea.2009.07.002Suche in Google Scholar

[24] R.Casati: PoliMi Springer Briefs. 10.1007/978-3-319-27732-5_5Suche in Google Scholar

[25] F.He, Q.Han, M.J.Jackson: Int. J. Nanoparticles1 (2008) 301. 10.1504/IJNP.2008.026473Suche in Google Scholar

[26] H.Asgharzadeh, A.Simchi, H.S.Kim: Mater. Sci. Eng.A528 (2015) 3981.10.1016/j.msea.2011.01.082Suche in Google Scholar

[27] K.Deng, J.Shi, C.Wang, X.Wang, Y.Wu, K.Nie, K.Wu: Composites Part A43 (2012) 1280. 10.1016/j.compositesa.2012.03.007Suche in Google Scholar

[28] K.Dash, D.Chaira, B.C.Ray: Mater. Res. Bull.48 (2013) 2535. 10.1016/j.materresbull.2013.03.014Suche in Google Scholar

[29] Y.Hirata, H.Fujita, T.Shimonosono: Ceram. Int.43 (2017) 1895. 10.1016/j.ceramint.2016.10.149Suche in Google Scholar

[30] B.Sadeghi, M.Shamanian, F.Ashrafizadeh, P.Cavaliere, A.Rizzo: J. Mater. Eng. Perform.26 (2017) 2928. 10.1007/s11665-017-2699-2Suche in Google Scholar

[31] C.J.Hsu, C.Y.Chang, P.W.Kao, N.J.Ho, C.P.Chang: Acta Mater.54 (2006) 5241. 10.1016/j.actamat.2006.06.054Suche in Google Scholar

[32] P.Heurtier, M.J.Jones, C.Desrayaud, J.H.Driver, F.Montheillet, D.Allehaux: J. Mater. Process. Technol.171 (2006) 348. 10.1016/j.jmatprotec.2005.07.014Suche in Google Scholar

[33] P.Periyasamy, B.Mohan, V.Balasubramanian: J. Mater. Eng. Perform.21 (2012) 2417. 10.1177/0954405415573697Suche in Google Scholar

[34] F.Humphreys: Acta Metall.25 (1977) 1323. 10.1016/0001-6160(77)90109-2Suche in Google Scholar

[35] T.R.McNelley, S.Swaminathan, J.Q.Su: Scr. Mater.58 (2008) 349. 10.1016/j.scriptamat.2007.09.064Suche in Google Scholar

[36] F.Khodabakhshi, A.Simchi, A.H.Kokabi, A.P.Gerlich: Mater. Sci. Eng. A666 (2016) 225. 10.1016/j.msea.2016.04.078Suche in Google Scholar

[37] F.Khodabakhshi, H. GhasemiYazdabadi, A.H.Kokabi, A.Simchi: Mater. Sci. Eng. A585 (2013) 222. 10.1016/j.msea.2013.07.062Suche in Google Scholar

[38] P.Periyasamy, B.Mohan, V.Balasubramanian: J. Mater. Eng. Perf.21 (2012) 2417. 10.1007/s11665-012-0176-5Suche in Google Scholar

[39] E.V.Zozulya, A.I.Il'inskii, I.N.Kolupaev: Phy. Met. Metallography111 (2011) 155. 10.1134/S0031918X1101025XSuche in Google Scholar

[40] F.Khodabakhshi, M.Kazeminezhad: Mater. Des.32 (2011) 3280. 10.1016/j.matdes.2011.02.032Suche in Google Scholar

[41] A.Rollett, F.Humphreys, G.S.Rohrer, M.Hatherly: Recrystallization and related annealing phenomena, Elsevier2004.10.1016/B978-008044164-1/50016-5Suche in Google Scholar

[42] B.Forbord, H.Hallem, N.Ryum, K.Marthinsen: Mater. Sci. Eng. A387–389 (2004) 936.10.1016/j.msea.2003.10.374Suche in Google Scholar

Received: 2017-03-30
Accepted: 2017-05-09
Published Online: 2017-11-25
Published in Print: 2017-12-08

© 2017, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111573/pdf
Button zum nach oben scrollen