Home Densification rate and interfacial adhesion of bilayer cemented tungsten carbide and steel
Article
Licensed
Unlicensed Requires Authentication

Densification rate and interfacial adhesion of bilayer cemented tungsten carbide and steel

  • Oluwatosin Job Ojo-kupoluyi , Suraya Mohd Tahir , Azmah Hanim Mohamed Ariff , B. T. Hang Tuah Baharudin , Khamirul Amin Matori and Mohd Shamsul Anuar
Published/Copyright: November 25, 2017
Become an author with De Gruyter Brill

Abstract

Manufacturing tailored materials is commonly faced with the challenge of shrinkage mismatch between layers resulting in delamination. The effects of sintering temperature and carbon variation on the densification and interfacial bond strength of bilayer cemented tungsten carbide and steel processed through powder metallurgy are analyzed. It is revealed through field-emission scanning electron microscopy images that inter-layer diffusion induced by liquid-phase sintering plays a major role in the densification and bonding of layers. Through dimensional analysis of sintered bilayer specimens, the strain rate of cemented tungsten carbide is observed to surpass that of steel. An enhanced densification rate of 6.1 % and M6C (eta carbide) reduction with increased carbon level results in strong interfacial bonding in specimens sintered at 1 280 °C. At 1 295 °C, diffusion accelerates and the axial and radial shrinkage increase by 14.05 % and 13.35 %, respectively, in 93.8 wt.% WC – 6 wt.% Fe – 0.2 wt.% C and 93.2 wt.% Fe – 6 wt.% WC – 0.8 wt.% C, thereby increasing the tendency for complete delamination.


*Correspondence address, Dr. Suraya Mohd Tahir, Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia, E-mail: , Tel.: +60389464383, Fax: +60386567122

References

[1] G.Largiller, D.Bouvard, C.P.Carry, A.Gabriel, J.Muller, T.Staab: Mech. Mater.53 (2012) 123131. 10.1016/j.mechmat.2012.04.002Search in Google Scholar

[2] M.B.Uday, M.A.Fauzi, H.Zuhailawati, A.B.Ismail: Mater. Sci. Eng. A528 (2011) 47534760. 10.1016/j.msea.2011.02.091Search in Google Scholar

[3] Z.Wang, J.Qian, J.Cao, S.Wang, T.A.Wen: J. Alloys Compd.437 (2007) 264268. 10.1016/j.jallcom.2006.07.110Search in Google Scholar

[4] M.Singh, R.Asthana, T.P.Shpargel: Mater. Sci. Eng. A498 (2008) 1930. 10.1016/j.msea.2007.11.150Search in Google Scholar

[5] A.Thomazic, C.Pascal, J.M.Chaix: Adv. Eng. Mater.13 (2011) 594598. 10.1002/adem.201000343Search in Google Scholar

[6] M.Dourandish, A.Simchi: J. Mater. Sci.44 (2009) 12641274. 10.1007/s10853-008-3241-6Search in Google Scholar

[7] J.G.Yeo, Y.G.Jung, S.C.Choi: J. Eur. Ceram. Soc.18 (1998) 12811285. 10.1016/S0955-2219(98)00054-5Search in Google Scholar

[8] C.Pascal, A.Thomazic, A.Antoni-Zdziobek, J.M.Chaix: J. Mater. Sci.47 (2012) 18751886. 10.1007/s10853-011-5976-8Search in Google Scholar

[9] W.Zhang, J.Xie, C.Wang: Mater. Sci. Eng. A382 (2004) 371377. 10.1016/j.msea.2004.05.010Search in Google Scholar

[10] H.Feng, Q.Meng, Y.Zhou, D.Jia: Mater. Sci. Eng. A395 (2005) 9297. 10.1016/j.msea.2005.02.003Search in Google Scholar

[11] H.Nie, W.Liang, L.Zheng, X.Ren, C.Chi, H.Fan: J. Mater. Eng. Perform.25 (2006) 46954705. 10.1007/s11665-016-2327-6Search in Google Scholar

[12] A.Simchi, A.Rota, P.Imgrund: Mater. Sci. Eng. A424 (2006), 282289. 10.1016/j.msea.2006.03.032Search in Google Scholar

[13] Y.Boonyongmaneerat, C.A.Schuh: Metall. Mater. Trans. A37 (2006) 14351442. 10.1007/s11661-006-0088-9Search in Google Scholar

[14] P.Z.Cai, D.J.Green, G.L.Messing: J. Am. Ceram. Soc.80 (1997) 19291939. 10.1111/j.1151-2916.1997.tb03075.xSearch in Google Scholar

[15] T.A.Fabijanic, Z.Alar, J.Potschke: Inter. J. Refract. Met. Hard Mater.50 (2015) 126132. 10.1016/j.ijrmhm.2014.12.006Search in Google Scholar

[16] C.Pascal, A.Thomazic, A.Antoni-Zdziobek, J.-M.Chaix: Int. J. Mater. Res.103 (2012) 296308. 10.3139/146.110647Search in Google Scholar

[17] B.Sundman, B.Jansson, J.O.Andersson: Calphad9 (1985) 153. 10.1016/0364-5916(85)90021-5Search in Google Scholar

[18] TCFE5: TCS Steels/Fe-alloys Database version 5.0 Thermo-Calc Software AB, Stockholm, Sweden (2005).Search in Google Scholar

[19] N.D.Sopchak, W.Z.Misiolek: Mater. Manuf. Process.15 (2000) 6579. 10.1080/10426910008912973Search in Google Scholar

[20] B.Desplanques, F.Valdivieso, S.Saunier: Ceram. Int.40 (2014) 1521515225. 10.1016/j.ceramint.2014.07.003Search in Google Scholar

[21] C.Pascal, J.M.Chaix, F.Dore, C.H.Allibert: J. Mater. Process. Technol.209 (2009) 12541261. 10.1016/j.jmatprotec.2008.03.058Search in Google Scholar

[22] R.Gonzalez, J.Echeberria, J.M.Sanchez, F.Castro: J. Mater. Sci.30 (1995) 34353439. 10.1007/BF00349891Search in Google Scholar

[23] A.Antoni-Zdziobek, J.Y.Shen, M.Durand-Charre: Int. J. of Refract. Met. Hard Mater.26 (2008) 372382. 10.1016/j.ijrmhm.2007.09.001Search in Google Scholar

[24] O.J.Ojo-kupoluyi, S.M.Tahir, M.A. AzmahHanim, B.T.H.T.Baharudin, K.A.Matori, M.S.Anuar: Int. J. Adv. Manuf. Tech. (2017), 19. 10.1007/s00170-017-0287-0Search in Google Scholar

[25] T.Cheng, R.Raj: J. Am. Ceram. Soc.72 (1989), 16491655. 10.1111/j.1151-2916.1989.tb06297.xSearch in Google Scholar

[26] E.A.Brandes, C.J.Smithells: Metals reference handbook 1983. Butterworths, London.Search in Google Scholar

Received: 2017-03-28
Accepted: 2017-07-18
Published Online: 2017-11-25
Published in Print: 2017-12-08

© 2017, Carl Hanser Verlag, München

Downloaded on 30.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111563/html
Scroll to top button