Home Investigation on microstructure and thermal properties of in-situ synthesized Cu–ZrO2 nanocomposites
Article
Licensed
Unlicensed Requires Authentication

Investigation on microstructure and thermal properties of in-situ synthesized Cu–ZrO2 nanocomposites

  • Marwa Elmahdy , Gamal Abouelmagd and Asaad A. Mazen
Published/Copyright: November 25, 2017
Become an author with De Gruyter Brill

Abstract

Cu–ZrO2 nanocomposites were prepared by an in-situ reactive synthesis of copper nitrate Cu(NO3)2 and zirconium oxychloride ZrOCl2. Zirconia (ZrO2) was added by 2.5, 5 and 10 wt.% to the Cu matrix to assess its effect on thermal conductivity and thermal expansion behavior. The results showed that ZrO2 nanoparticles (30–50 nm) were homogeneously distributed in the copper matrix. The measured thermal conductivity for the Cu–ZrO2 nanocomposites decreased from 372.8 to 94.4 W m−1 K−1 with increasing ZrO2 content from 0 to 10 wt.%. Cu-10 wt.% ZrO2 nanocomposite yields a low thermal conductivity of 94.4 W · m−1 K−1 along with a low coefficient of thermal expansion, 11.47 × 10−6 K−1.


*Correspondence address, Dr. Marwa Elmahdy, Mechanical Department, Higher Technological Institute, Tenth of Ramadan 228, Egypt, Tel.: +201006244715, Fax: +20015371351, E-mail:

References

[1] A.Fathy, A.Megahed: Int. J. Adv. Manuf. Technol.62 (2012) 953. 10.1007/s00170-011-3861-xSearch in Google Scholar

[2] C.Jang, Q.Jiang, J.Lu, Z.Ye: Mater. Sci. Technol.31 (2015) 1108. 10.1016/j.jmst.2015.07.018Search in Google Scholar

[3] A.Fathy, O.Elkady, A.Abu-Oqail: J. Composite Mater. (2017) 111. 10.1177/0021998317726148Search in Google Scholar

[4] A.Wagih, A.Fathy: Adv. Powder Technol.28 (2017) 1954. 10.1016/j.apt.2017.05.005Search in Google Scholar

[5] A.Fathy, O.Elkady, M.M.Mohammed: Trans. Nonf. Metals Soc. Chin.25 (2015) 46. 10.1016/S1003-6326(15)63577-4Search in Google Scholar

[6] A.Wagih, A.Fathy: Adv. Powder Technol.27 (2016) 403. 10.1016/j.apt.2016.01.021Search in Google Scholar

[7] A.Fathy, O.Elkady, A.Abu-Oqail: J. Alloys Compd.719 (2017) 411. 10.1016/j.jallcom.2017.05.209Search in Google Scholar

[8] J.Ding, N.Zhao, C.Shi, X.J.Du: J. Alloys Compd.425 (2006) 390. 10.1016/j.jallcom.2006.01.058Search in Google Scholar

[9] M.Khaloobagheri, B.Janipour, N.Askari: Adv. Mater. Res.829 (2014) 610. 10.4028/www.scientific.net/AMR.829.610Search in Google Scholar

[10] A.Fathy, O.El-Kady: Mater. Des.46 (2013) 355. 10.1016/j.matdes.2012.10.042Search in Google Scholar

[11] B.D.Cullity: Elements of X-ray diffraction, 2nd ed.California, USA: Addison- Wesley (1978) 102.Search in Google Scholar

[12] E.J.Mittemeijer, U.Welzel: Z. Kristallogr.223 (2008) 552. 10.1524/zkri.2008.1213Search in Google Scholar

[13] A.Fathy, O.Elkady, A.Abu-Oqail: Mater. Sci. Technol. (2017) in press.10.1080/02670836.2017.1353668Search in Google Scholar

[14] R.Ritasalo, X.W.Liua, O.Söderberg, A.Keski-Honkola, V.Pitkänen, S.P.Hannula: Procedia Eng.10 (2011) 124. 10.1016/j.proeng.2011.04.023Search in Google Scholar

[15] C.L.Hsieh, W.H.Tuan: Mater. Sci. Eng. A460/461 (2007) 453.10.1016/j.msea.2007.01.109Search in Google Scholar

Received: 2017-06-04
Accepted: 2017-08-08
Published Online: 2017-11-25
Published in Print: 2017-12-08

© 2017, Carl Hanser Verlag, München

Downloaded on 30.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111576/html
Scroll to top button