Thermal shock behavior of rare earth modified alumina ceramic composites
-
Junlong Sun
und Changxia Liu
Abstract
Alumina matrix ceramic composites toughened by AlTiC master alloys, diopside and rare earths were fabricated by hot-pressing and their thermal shock behavior was investigated and compared with that of monolithic alumina. Results showed that the critical thermal shock temperature (ΔT) of monolithic alumina was 400 °C. However, it decreased to 300 °C for alumina incorporating only AlTiC master alloys, and increased with further addition of diopside and rare earths. Improvement of thermal shock resistance was obtained for alumina ceramic composites containing 9.5 wt.% AlTiC master alloys and 0.5 wt.% rare earth additions, which was mainly attributed to the formation of elongated grains in the composites.
References
[1] D.P.H.Hasselman: J. Am. Ceram. Soc.49 (1965) 103. 10.1111/j.1151-2916.1966.tb13218.xSuche in Google Scholar
[2] D.P.H.Hasselman: J. Am. Ceram. Soc.52 (1969) 600. 10.1111/j.1151-2916.1969.tb15848.xSuche in Google Scholar
[3] D.P.H.Hasselman: Ceram. Bull.49 (1970) 1033.10.1213/00000539-197011000-00036Suche in Google Scholar
[4] W.D.Kingery: J. Am. Ceram. Soc.38 (1954) 3. 10.1111/j.1151-2916.1955.tb14545.xSuche in Google Scholar
[5] N.M.Rendtorff, L.B.Garrido, E.F.Aglietti: Mater. Sci. Eng.A498 (2008) 208. 10.1016/j.msea.2008.08.036Suche in Google Scholar
[6] C.X.Liu, J.L.Sun, Z.Y.Xie: J. Alloys Compd.546 (2013) 102. 10.1016/j.jallcom.2012.08.097Suche in Google Scholar
[7] C.X.Liu, J.L.Sun, Z.M.Tian: Int. J. Mater. Res.104 (2013) 1137. 10.3139/146.110967Suche in Google Scholar
[8] C.X.Liu, J.H.Zhang, J.L.Sun, X.H.Zhang: J. Eur. Ceram. Soc.28 (2008) 199. 10.1016/j.jeurceramsoc.2007.05.023Suche in Google Scholar
[9] C.X.Liu, J.H.Zhang, J.L.Sun, X.H.Zhang, Y.J.Hu: Ceram. Int.33 (2007) 1149. 10.1016/j.ceramint.2006.03.018Suche in Google Scholar
[10] C.X.Liu, J.L.Sun, M.H.Yao: Mater. Res. Innovations17 (2013) 293. 10.1179/1433075X12Y.0000000075Suche in Google Scholar
[11] X.Q.You, T.Z.Si, N.Liu, P.P.Ren, Y.D.Xu, J.P.Feng: Ceram. Int.31 (2005) 33. 10.1016/j.ceramint.2004.02.009Suche in Google Scholar
[12] L.Y.Shen, M.J.Liu, X.Z.Liu, B.Li: Mater. Res. Bull.42 (2007) 2048. 10.1016/j.materresbull.2007.02.001Suche in Google Scholar
[13] P.Hvizdoš, D.Jonsson, M.Anglada, G.Anné, O.V.D.Biest: J. Eur. Ceram. Soc.27 (2007) 1365. 10.1016/j.jeurceramsoc.2006.05.030Suche in Google Scholar
[14] P.K.Panda, V.A.Jaleel, G.Lefebvre: Mater. Sci. Eng. A485 (2008) 558. 10.1016/j.msea.2007.10.080Suche in Google Scholar
[15] H.Majidian, T.Ebadzadeh, E.Salahi: Mater. Sci. Eng. A530 (2011) 585. 10.1016/j.msea.2011.10.027Suche in Google Scholar
[16] M.M.S.Wahsh, R.M.Khattab, M.Awaad: Mater. Des.41 (2012) 31. 10.1016/j.matdes.2012.04.040Suche in Google Scholar
[17] I.D.Katsavou, M.K.Krokida, I.C.Ziomas: Ceram. Int.38 (2012) 5747. 10.1016/j.ceramint.2012.04.021Suche in Google Scholar
[18] I.Z.Tiluga, V.Svinka, R.Svinka, L.Grase: Ceram. Int.41 (2015) 11504. 10.1016/j.ceramint.2015.05.116Suche in Google Scholar
[19] C.Aksel, P.D.Warren: J. Eur. Ceram. Soc.23 (2003) 301. 10.1016/S0955-2219(02)00178-4Suche in Google Scholar
[20] M.Kalantar, G.Fantozzi: Mater. Sci. Eng. A472 (2008) 237. 10.1016/j.msea.2007.03.032Suche in Google Scholar
[21] A.Kovalčíková, J.Dusza, P.Šajgalík: J. Eur. Ceram. Soc.29 (2009) 2387. 10.1016/j.jeurceramsoc.2009.01.021Suche in Google Scholar
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Downloads and the impact of Open Access at IJMR
- Original Contributions
- A material selection approach using the TODIM (TOmada de Decisao Interativa Multicriterio) method and its analysis
- Investigation of the influence of Fe on the microstructure and properties of Ti5553 near-β titanium alloy with combinatorial approach
- Evolution of the temperature, microstructures and microsegregation in equiaxed solidification of Al-5 wt.% Cu alloy
- Phase composition and microstructure of materials in the Ir–Ru–B system prepared by arc melting and VHP sintering
- Thermal shock behavior of rare earth modified alumina ceramic composites
- Investigation of tribological and corrosion properties of CuTi–alumina nanocomposite fabricated by mechanical alloying
- Effect of acetic acid on corrosion behavior of AISI 201, 304 and 430 stainless steels
- Verification of strength mis-match of electron beam welded heavy thickness titanium alloy
- Short Communications
- Effect of toughening Fe2B by the addition of tungsten on the wear resistance of Fe–B–C alloy
- Microstructural stability of heat-resistant high-pressure die-cast Mg-4Al-4Ce alloy
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Downloads and the impact of Open Access at IJMR
- Original Contributions
- A material selection approach using the TODIM (TOmada de Decisao Interativa Multicriterio) method and its analysis
- Investigation of the influence of Fe on the microstructure and properties of Ti5553 near-β titanium alloy with combinatorial approach
- Evolution of the temperature, microstructures and microsegregation in equiaxed solidification of Al-5 wt.% Cu alloy
- Phase composition and microstructure of materials in the Ir–Ru–B system prepared by arc melting and VHP sintering
- Thermal shock behavior of rare earth modified alumina ceramic composites
- Investigation of tribological and corrosion properties of CuTi–alumina nanocomposite fabricated by mechanical alloying
- Effect of acetic acid on corrosion behavior of AISI 201, 304 and 430 stainless steels
- Verification of strength mis-match of electron beam welded heavy thickness titanium alloy
- Short Communications
- Effect of toughening Fe2B by the addition of tungsten on the wear resistance of Fe–B–C alloy
- Microstructural stability of heat-resistant high-pressure die-cast Mg-4Al-4Ce alloy
- DGM News
- DGM News