Startseite On the stress corrosion cracking behaviour of 6XXX series aluminium alloys
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the stress corrosion cracking behaviour of 6XXX series aluminium alloys

  • Reinhold Braun
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The stress corrosion cracking behaviour of 6061 and 6013 sheet materials was investigated in naturally aged and peak-aged heat treatment conditions. Constant deformation, constant load and constant extension rate tests were carried out using aqueous solutions of 0.6 M NaCl and 0.6 M NaCl + 0.06 M NaHCO3. The microstructure of the alloys was examined using transmission electron microscopy. Potentiodynamic polarisation measurements were performed in aerated and deaerated aqueous chloride and/or bicarbonate solutions to determine corrosion and breakdown potentials. Under constant deformation and constant load conditions, the alloys 6061 and 6013 stressed in transverse direction were resistant to stress corrosion cracking in both T4 and T6 tempers. The constant extension rate testing technique indicated environment-induced cracking with alloy 6061-T4, whereas deterioration in ductility of the other alloys was caused by pitting and intergranular corrosion. Sensitivity to intergranular corrosion did not cause stress corrosion cracking in 6013-T6 sheet.


* Correspondence address, Dr. Reinhold Braun, DLR – German Aerospace Center, Institute of Materials Research, D-51170 Köln, Germany. Tel.: +49 2203 601 24 57, Fax: +49 2203 69 64 80, E-mail:

Dedicated to Professor Dr. Monika Feller-Kniepmeier on the occasion of her 80th birthday


References

[1] E.A.Starke, A.A.S.Csontos, in: T.Sato, S.Kumai, T.Kobayashi, Y.Murakami (Eds.), Aluminum Alloys – Their Physical and Mechanical Properties (ICAA-6), vol. 4, The Japan Institute of Light Metals, Tokyo (1998), 2077.Suche in Google Scholar

[2] J.T.Staley, D.J.Lege: J. Phys. IV, Colloque C7, supplément au Journal de Physique III3 (1993) 179.Suche in Google Scholar

[3] A.Morita, in: T.Sato, S.Kumai, T.Kobayashi, Y.Murakami (Eds.), Aluminum Alloys – Their Physical and Mechanical Properties (ICAA-6), vol. 1, The Japan Institute of Light Metals, Tokyo (1998), 25.Suche in Google Scholar

[4] M.O.Speidel: Metall. Trans. A6 (1975) 631.10.1007/BF02672284Suche in Google Scholar

[5] T.J.Summerson, D.O.Sprowls, in: E.A.Starke, T.H.Sanders (Eds.), Aluminum Alloys – Their Physical and Mechanical Properties, EMAS, Cradley Heath (1986), 1575.Suche in Google Scholar

[6] T.E.Graedel: J. Electrochem. Soc.136 (1989) 204C.10.1149/1.2096869Suche in Google Scholar

[7] S.B.Lyon, G.E.Thompson, J.B.Johnson, in: V.S.Agarwala, G.M.Ugiansky (Eds.), New Methods for Corrosion Testing of Aluminum Alloys, ASTM STP 1134, American Society for Testing and Materials, Philadelphia (1992) 20.10.1520/STP19578SSuche in Google Scholar

[8] A.H.Le, B.F.Brown, R.T.Foley: Corrosion36 (1980) 673.Suche in Google Scholar

[9] R.Braun: Mater. Corros.51 (2000) 607.10.1002/1521-4176(200009)51:9<607::AID-MACO607>3.0.CO;2-8Suche in Google Scholar

[10] R.Braun: Mater. Corros.54 (2003) 157.10.1002/maco.200390035Suche in Google Scholar

[11] N.J.H.Holroyd, A.K.Vasudevan, L.Christodoulou, in: A.K.Vasudevan, R.D.Doherty (Eds.), Aluminum Alloys – Contemporary Research and Applications, Treatise on Materials Science and Technology, vol. 31, Academic Press, Boston (1989) 463.10.1016/B978-0-12-341831-9.50021-8Suche in Google Scholar

[12] N.J.H.Holroyd, in: R.P.Gangloff, M.B.Ives (Eds.), Environment-Induced Cracking of Metals, National Association of Corrosion Engineers, Houston (1990) 311.Suche in Google Scholar

[13] W.Gruhl: Z. Metalkd.75 (1984) 819.10.1515/ijmr-1984-751101Suche in Google Scholar

[14] T.D.Burleigh: Corrosion47 (1991) 89.10.5006/1.3585235Suche in Google Scholar

[15] R.Braun: Materialwiss. Werkstofftech.38 (2007) 674.10.1002/mawe.200700204Suche in Google Scholar

[16] J.E.Hatch: Aluminum: Properties and Physical Metallurgy, American Society for Metals, Metals Park (1984).Suche in Google Scholar

[17] L.P.Troeger, E.A.Starke: Mater. Sci. Eng. A277 (2000) 102.10.1016/S0921-5093(99)00543-2Suche in Google Scholar

[18] M. Tamizifar, G.W.Lorimer, in: L.Arnberg, O.Lohne, E.Nes, N.Ryum (Eds.), Aluminium Alloys – Their Physical and Mechanical Properties (ICAA3), vol. INTH and SINTEF, Trondheim (1992) 220.Suche in Google Scholar

[19] D.J.Chakrabarti, D.E.Laughlin: Prog. Mater. Sci.49 (2004) 389.10.1016/S0079-6425(03)00031-8Suche in Google Scholar

[20] G.B.Burger, A.K.Gupka, P.W.Jeffrey, D.J.Lloyd: Mater. Charact.35 (1995) 23.10.1016/1044-5803(95)00065-8Suche in Google Scholar

[21] H.-J.Schmidt, B.Schmidt-Brandecker, N.Ohrloff, T.Fleischer, in: J.L.Rudd, R.M.Bader (Eds.), ICAF '99 – Structural Integrity for the Next Millennium, vol. 1, EMAS Publishing, Sheffield (1999) 537.Suche in Google Scholar

[22] H.Meißner: Aluminium68 (1992) 1077.Suche in Google Scholar

[23] T.D.Burleigh, in: L.Arnberg, O.Lohne, E.Nes, N.Ryum (Eds.), Aluminium Alloys – Their Physical and Mechanical Properties (ICAA3), vol. II, NTH and SINTEF, Trondheim (1992) 435.Suche in Google Scholar

[24] V.Guillaumin, G.Mankowski: Corr. Sci.42 (2000) 105.10.1016/S0010-938X(99)00053-0Suche in Google Scholar

[25] X.Liu, G.S.Frankel, B.Zoofan, S.I.Rokhlin: Corr. Sci.46 (2004) 405.10.1016/S0010-938X(03)00149-5Suche in Google Scholar

[26] G.Wenzel, G.Knörnschild, H.Kaesche: Werkst Korros.42 (1991) 449.10.1002/maco.19910420903Suche in Google Scholar

[27] D.O.Sprowls, R.H.Brown, in: R.W.Staehle (Ed.), Fundamental Aspects of Stress Corrosion Cracking, National Association of Corrosion Engineers, Houston (1969) 466.Suche in Google Scholar

[28] R.Braun, B.Lenczowski, G.Tempus: Mater. Sci. Forum331–337 (2000) 1647.Suche in Google Scholar

[29] J.L.Searles, P.I.Gouma, R.G.Buchheit: Metall. Mater. Trans. A32 (2001) 2859.10.1007/s11661-001-1036-3Suche in Google Scholar

[30] N.J.H.Holroyd, A.Gray, G.M.Scamans, R.Hermann, in: C. Baker, P.J. Gregson, S.J. Harris, C.J. Peel (Eds.), Proceedings of the Third International Aluminium-Lithium Conference, The Institute of Metals, London (1986) 310.Suche in Google Scholar

[31] R.Braun: Werkst. Korros.44 (1993) 73.10.1002/maco.19930440304Suche in Google Scholar

[32] R.Braun: Mater. Corros.55 (2004) 241.10.1002/maco.200303722Suche in Google Scholar

[33] J.G.Craig, R.C.Newman, M.R.Jarrett, N.J.H.Holroyd, J.Phys, Colloque C3, supplément au n° 9 48 (1987) C3825.10.1051/jphyscol:1987397Suche in Google Scholar

[34] R.G.Buchheit, J.P.Moran, F.D.Wall, G.E.Stoner, in: S.M.Bruemmer, E.I.Meletis, R.H.Jones, W.W.Gerberich, F.P.Ford, R.W.Staehle (Eds.), Parkins Symposium on Fundamental Aspects of Stress Corrosion Cracking, The Minerals, Metals & Materials Society, Warrendale (1992) 141.Suche in Google Scholar

[35] R.Braun, H.Buhl, in: H.Buhl (Ed.), Advanced Aerospace Material, Springer-Verlag, Berlin (1992) 296.Suche in Google Scholar

[36] Y.Song, T.N.Baker: Mater. Sci. Eng. A201 (1995) 251.10.1016/0921-5093(95)09781-3Suche in Google Scholar

[37] G.A.Edwards, K.Stiller, G.L.Dunlop, M.J.Couper: Acta Mater.46 (1998) 3893.10.1016/S1359-6454(98)00059-7Suche in Google Scholar

[38] Z.W.Huang, R.E.Smallman, M.H.Loretto, J.White: Mater. Sci. Technol.7 (1991) 205.Suche in Google Scholar

[39] A.K.Gupta, D.J.Lloyd, S.A.Court: Mater. Sci. Eng. A316 (2001) 11.10.1016/S0921-5093(01)01247-3Suche in Google Scholar

[40] D.J.Chakrabarti, B.K.Cheong, D.E.Laughlin, in: S.K.Das (Ed.), Symposium on automotive alloys II held during the TMS annual meeting, The Minerals, Metals & Materials Society, Warrendale (1998) 27.Suche in Google Scholar

[41] X.Wang, W.J.Poole, S.Esmaeili, D.J.Lloyd, J.D.Embury: Metall. Mater. Trans. A34 (2003) 2913.10.1007/s11661-003-0191-0Suche in Google Scholar

[42] S.Esmaeili, X.Wang, D.J.Lloyd, W.J.Poole, Metall. Mater. Trans. A34 (2003) 751.Suche in Google Scholar

[43] R.Braun: Mater. Sci. Forum519–521 (2006) 735.10.4028/www.scientific.net/MSF.519-521.735Suche in Google Scholar

[44] R.Braun: Werkst. Korros.45 (1994) 255.10.1002/maco.19940450502Suche in Google Scholar

[45] M.C.Reboul, T.Magnin, T.J.Warner, in: L.Arnberg, O.Lohne, E.Nes, N.Ryum (Eds.), Aluminium Alloys – Their Physical and Mechanical Properties (ICAA3), vol. II, NTH and SINTEF, Trondheim (1992) 453.Suche in Google Scholar

[46] R.J.H.Wanhill, L.Schra, W.G.J.'t Hart, in: L.Arnberg, O.Lohne, E.Nes, N.Ryum (Eds.), Aluminium Alloys – Their Physical and Mechanical Properties (ICAA3), vol. I, NTH and SINTEF, Trondheim (1992) 357.Suche in Google Scholar

[47] R.Braun: Mater. Corros.56 (2005) 159.10.1002/maco.200403825Suche in Google Scholar

[48] R.Braun, in: M.Peters, P.-J.Winkler (Eds.), Aluminium–Lithium, DGM Informationsgesellschaft, Oberursel (1992) 697.Suche in Google Scholar

[49] J.C.Craig, R.C.Newman, M.R.Jarrett, N.J.H.Holroyd, in: M.R.Louthan, R.P.McNitt, R.D.Sisson (Eds.), Environmental Degradation of Engineering Materials III, Pennsylvania State University, University Park (1987) 313.Suche in Google Scholar

[50] R.E.Ricker, J.L.Fink, A.K.Vasudevan: Metall. Trans. A22 (1991) 264.Suche in Google Scholar

[51] R.Braun, in: T.H.Sanders, E.A.Starke (Eds.), Aluminum Alloys – Their Physical and Mechanical Properties (ICAA4), vol. II, The Georgia Institute of Technology, Atlanta (1994) 511.Suche in Google Scholar

[52] T.Minoda, H.Yoshida: Metall. Mater. Trans. A33 (2002) 2891.10.1007/s11661-002-0274-3Suche in Google Scholar

[53] F.Eckermann, T.SuterP.J.Uggowitzer, A.Afseth, M.Stampanoni, F.Marone, P.Schmutz: J. Electrochem. Soc.156 (2009) C1.10.1149/1.2996269Suche in Google Scholar

[54] K.Yamaguchi, K.Tohma, in: T.Sato, S.Kumai, T.Kobayashi, Y.Murakami (Eds.), Aluminum Alloys – Their Physical and Mechanical Properties (ICAA-6), vol. 3, The Japan Institute of Light Metals, Tokyo (1998) 1657.Suche in Google Scholar

[55] A.Shi, B.A.Shaw, E.Sikora: Corrosion61 (2005) 534.10.5006/1.3278189Suche in Google Scholar

[56] G.Svenningsen, M.H.Larsen, J.C.Walmsley, J.H.Nordlien, K.Nisancioglu: Corr. Sci.48 (2006) 1528.10.1016/j.corsci.2005.05.045Suche in Google Scholar

[57] G.Svenningsen, M.H.Larsen, J.H.Nordlien, K.Nisancioglu: Corr. Sci.48 (2006) 3969.10.1016/j.corsci.2006.03.018Suche in Google Scholar

[58] T.D.Burleigh, E.Ludwiczak, R.A.Petri: Corrosion51 (1995) 50.10.5006/1.3293577Suche in Google Scholar

[59] R.Dif, D.Bechet, T.Warner, H.Ribes, in: T.Sato, S.Kumai, T.Kobayashi, Y.Murakami (Eds.), Aluminum Alloys – Their Physical and Mechanical Properties (ICAA-6), vol. 3, The Japan Institute of Light Metals, Tokyo (1998), 1991.Suche in Google Scholar

[60] R.Dif, B.Bès, J.C.Ehrström, C.Sigli, T.J.Warner, P.Lassince, H.Ribes: Mater. Sci. Forum331–337 (2000) 1613.Suche in Google Scholar

[61] R.Braun: Mater. Corros.56 (2005) 243.10.1002/maco.200590033Suche in Google Scholar

[62] X.Liu, G.S.Frankel, B.Zoofan, S.I.Roklin: J. Electrochem. Soc.153 (2006) B42.10.1149/1.2142288Suche in Google Scholar

[63] R.Braun, T.Hack: Mater. Sci. Forum217-222 (1996) 1635.Suche in Google Scholar

[64] R.Braun: Werkst. Korros.43 (1992) 106.10.1002/maco.19920430304Suche in Google Scholar

[65] W.Hepples, M.R.Jarrett, J.S.Crompton, N.J.H.Holroyd, in: R.P.Gangloff, M.B.Ives (Eds.), Environment-Induced Cracking of Metals, National Association of Corrosion Engineers, Houston (1990) 383.Suche in Google Scholar

[66] R.Braun: Werkst. Korros.45 (1994) 369.10.1002/maco.19940450702Suche in Google Scholar

Received: 2009-10-25
Accepted: 2010-2-19
Published Online: 2013-06-11
Published in Print: 2010-05-01

© 2010, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Prof. Dr. Monika Feller-Kniepmeier 80th birthday
  5. Basic
  6. Model calculation of inoculation and experimental verification in two alloy-systems
  7. Enrichment of boron at grain boundaries of platinum-based alloys determined by electron energy loss spectroscopy in a transmission electron microscope
  8. Measurement of the lattice misfit of Pt–Al–Cr superalloy by convergent beam electron diffraction (CBED)
  9. Microstructural and micromechanical characterisation of a Pt–Al–Cr–Ni–Re alloy by means of transmission electron microscopy and nanoindentation
  10. X-ray reflections from the γ/γ′-microstructure of nickel-base superalloys: effect of the plane tilting
  11. Physicochemical properties and creep strength of a single crystal of nickel-base superalloy containing rhenium and ruthenium
  12. Interdependence between glass stability and phase formation sequence during crystallization of Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass
  13. On the formation of λ-MnAl4
  14. Applied
  15. Development of Ni–Mn-based alloys for the fast epitaxial braze-repair of single-crystalline nickel-based superalloys
  16. Influence of heat treatment and microstructure on the tensile pseudoelastic response of an Ni-rich NiTi shape memory alloy
  17. Microstructural stability of an Ni–Mo based Hastelloy after 10 MeV electron irradiation at high temperature
  18. Oxidation behaviour of TiAl-based intermetallic coatings on γ-TiAl alloys
  19. Oxidation and fatigue behaviour of γ-TiAl coated with HIPIMS CrAlYN/CrN nanoscale multilayer coatings and EB-PVD thermal barrier coatings
  20. On the stress corrosion cracking behaviour of 6XXX series aluminium alloys
  21. Investigation of surface film nanostructure and assessment of its impact on friction force stabilization during automotive braking
  22. Creep strength of a binary Al62Ti38 alloy
  23. Bowing out of a dislocation from wall of persistent slip bands (PSB)
  24. Effect of martensite volume fraction on mechanical properties of dual-phase treated AISI-4012 sheet steels
  25. The joint properties of dissimilar aluminum plates joined by friction stir welding
  26. Notification
  27. DGM News
Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110314/html
Button zum nach oben scrollen