Influence of heat treatment and microstructure on the tensile pseudoelastic response of an Ni-rich NiTi shape memory alloy
-
Leandru-Gheorghe Bujoreanu
Abstract
The influence of microstructure on the stress–strain behavior of an Ni-rich NiTi shape memory alloy is examined. Specimens cut from a large-diameter bar of Ni50.7Ti49.3 shape memory alloy were analyzed in two states: (i) annealed and (ii) annealed and aged. The annealed state shows a fully austenitic structure with no precipitates and no distortions caused by residual stresses. The annealed and aged state has coherent Ni4Ti3 particles precipitated in the proximity of the austenite grain boundaries. The size of the precipitates increases moving away from the grain boundaries toward the grain interiors. The evolution of the two states in the stress–strain–temperature space has been analyzed using tensile specimens with special geometry. Due to the complex effects of the coherent precipitates, the specimens in the aged state exhibited lower stress plateaus in the tensile loading–unloading curves, which enabled the occurrence of transformation pseudoelasticity from room temperature to 333 K.
References
[1] T.W.Duerig, R.Zadno, in: T.W.Duerig, K.N.Melton, D.Stöckel, C.M.Wayman (Eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London (1990) 369.10.1016/B978-0-7506-1009-4.50036-6Search in Google Scholar
[2] D.S.Ford, S.R.White: Acta Mater.44 (1996) 2295.10.1016/1359-6454(95)00343-6Search in Google Scholar
[3] J.Van Humbeeck, R.Stalmans, in: K.Otsuka, C.M.Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge (1998) 149.Search in Google Scholar
[4] K.N.Melton, in: K.Otsuka, C.M.Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge (1998) 220.Search in Google Scholar
[5] T.Duerig, A.Pelton, D.Stöckel: Mater. Sci. Eng. A273-275 (1999) 149.10.1016/S0921-5093(99)00294-4Search in Google Scholar
[6] R.C.L.Sachdeva, S.Miyazaki, in: T.W.Duerig, K.N.Melton, D.Stöckel, C.M.Wayman (Eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London (1990) 452.10.1016/B978-0-7506-1009-4.50042-1Search in Google Scholar
[7] J.P.O'LearyJ.E.Nicholson, R.F.Gatturna, in: T.W.Duerig, K.N.Melton, D.Stöckel, C.M.Wayman (Eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London (1990) 477.Search in Google Scholar
[8] J.Stice, in: T.W.Duerig, K.N.Melton, D.Stöckel, C.M.Wayman (Eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London (1990) 483.10.1016/B978-0-7506-1009-4.50045-7Search in Google Scholar
[9] N.B.Morgan: Mater. Sci. Eng. A378 (2004) 16.10.1016/j.msea.2003.10.326Search in Google Scholar
[10] J.D.Chute, D.E.Hodgson, in: T.W.Duerig, K.N.Melton, D.Stöckel, C.M.Wayman (Eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London (1990) 420.10.1016/B978-0-7506-1009-4.50039-1Search in Google Scholar
[11] G.Eggeler, E.Hornbogen, A.Yawny, A.Heckmann, M.Wagner: Mater. Sci. Eng. A378 (2004) 24.10.1016/j.msea.2003.10.327Search in Google Scholar
[12] T.Saburi, in: K.Otsuka, C.M.Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge (1998) 49.Search in Google Scholar
[13] J.L.Murray, in: T.B.Massalski (Ed) Binary Alloy Phase Diagrams, 2nd Edition, vol. 3. ASM International (1996) 2875.Search in Google Scholar
[14] J.Khalil-Allafi, W.W.Schmahl, M.Wagner, H.Sitepu, D.M.Toebbens, G.Eggeler: Mater. Sci. Eng. A378 (2004) 161.10.1016/j.msea.2003.11.062Search in Google Scholar
[15] J.Khalil-Allafi, A.Dlouhy, G.Eggeler: Acta Mater.50 (2002) 4255.10.1016/S1359-6454(02)00257-4Search in Google Scholar
[16] A.Dlouhy, J. KhalilAllafi, G.Eggeler: Z. Metallkd.95 (2004) 518.Search in Google Scholar
[17] Q.Chen, X.F.Wu, T.Ko: Scripta Metall. Mater.29 (1993) 49.10.1016/0956-716X(93)90252-NSearch in Google Scholar
[18] A.Dlouhy, J. KhalilAllafi, G.Eggeler: Philos. Mag.83 (2003) 339.10.1080/0141861021000034531Search in Google Scholar
[19] M.Frémond, S.Miyazaki: Shape Memory Alloys. Springer Verlag, Wien–New York (1996).10.1007/978-3-7091-4348-3Search in Google Scholar
[20] W.W.Schmahl, J.Khalil-Allafi, B.Hasse, M.Wagner, A.Heckmann, C.Somsen: Mater. Sci. Eng. A378 (2004) 81.10.1016/j.msea.2003.11.081Search in Google Scholar
[21] J.A.Shaw, J.Kyriakides: J. Mech. Phys. Solids43 (1995) 1243.10.1016/0022-5096(95)00024-DSearch in Google Scholar
[22] A.Mehta, X.-Y.Gong, V.Imbeni, A.Pelton, R.O.Ritchie: Adv. Mater. (2007) 19.10.1002/adma.200601916Search in Google Scholar
[23] S.W.Robertson, A.Mehta, A.R.Pelton, R.O.Ritchie: Acta Mater.55 (2007) 6198.10.1016/j.actamat.2007.07.028Search in Google Scholar
[24] A.Schaefer, M.F.-X.Wagner, in: P. Šittner, L. Heller, eV. Paidar (Eds.), ESOMAT 2009 – The 8th European Symposium on Martensitic Transformations, 06031, EDP Sciences (www.esomat.org).10.1051/esomat/200906031Search in Google Scholar
[25] P.H.Leo, T.W.Shield, O.P.Bruno: Acta Metall. Mater.41 (1993) 2477.10.1016/0956-7151(93)90328-PSearch in Google Scholar
[26] Y.Liu, Y.Liu, J.Van Humbeeck: Scripta Mater.39 (1998) 1047.10.1016/S1359-6462(98)00241-3Search in Google Scholar
[27] Q.P.Sun, Z.Q.Li: Int. J. Solids Struct.39 (2002) 3797.10.1016/S0020-7683(02)00182-8Search in Google Scholar
[28] M.L.Young, M. F.-X.Wagner, J.Frenzel, W.W.Schmahl, G.Eggeler: Acta Mater.58 (2010) 2344.10.1016/j.actamat.2009.12.021.Search in Google Scholar
[29] J.Olbricht, A.Schaefer, M.F.-X.Wagner, G.Eggeler, in: S.Miyazaki (Ed.), SMST 2007, ASM International: Tsukuba (2007) 47.Search in Google Scholar
[30] S.Miyazaki, K.Otsuka: Metall. Mater. Trans. A17 (1986) 53.10.1007/BF02644442Search in Google Scholar
[31] J. KhalilAllafi, G.Eggeler, A.Dlouhy, W.W.Schmahl, C.Somsen: Mater. Sci. Eng. A378 (2004) 148.10.1016/j.msea.2003.10.335Search in Google Scholar
[32] S.M.Russel, in: S.M.Russel, A.R.Pelton (Eds.), SMST 2000, ASM International: Pacific Grove, Ca, USA (2001) 1.10.9774/GLEAF.3062.2000.wi.00003Search in Google Scholar
[33] K.N.Melton, O.Mercier: Acta Metall.29 (1981) 393.10.1016/0001-6160(81)90165-6Search in Google Scholar
[34] A.R.Pelton, J.DiCiello, S.MiyazakiI., in: S.M.Russel, A.R.Pelton (Eds.), SMST 2000, ASM International: Pacific Grove, Ca, USA (2001) 361.Search in Google Scholar
[35] C.P.Frick, A.M.Ortega, J.Tyber, K.Gall, H.J.Maier: Metall. Mater. Trans. A35 (2004) 2013.10.1007/s11661-004-0150-4Search in Google Scholar
[36] S.Gollerthan, M.L.Young, A.Baruj, J.Frenzel, W.W.Schmahl, G.Eggeler: Acta Mater.57 (2009) 1015.10.1016/j.actamat.2008.10.055Search in Google Scholar
[37] S.Gollerthan, D.Herberg, A.Baruj, G.Eggeler: Mater. Sci. Eng. A481–482 (2007) 156.10.1016/j.msea.2007.03.126Search in Google Scholar
[38] J. KhalilAllafi, X.Ren, G.Eggeler: Acta Mater.50 (2002) 793.10.1016/S1359-6454(01)00385-8Search in Google Scholar
[39] L.Delaey, in: R.W.Cahn, P.Haasen, E.J.Kramer (Eds.), Materials Science and Technology, vol. 5. Weinheim: VCH (1991) 339.Search in Google Scholar
[40] M.C.Carroll, C.Somsen, G.Eggeler: Scripta Mater.50 (2004) 187.10.1016/j.scriptamat.2003.09.020Search in Google Scholar
[41] P.Prader, A.C.Kneissl: Z. Metallkd.88 (1997) 410.Search in Google Scholar
[42] T.Honma in: H.Funakubo (Ed.), Shape Memory Alloys, vol. 1. Gordon and Breach Science Publishers, New York (1987) 61.Search in Google Scholar
[43] K.Otsuka in: T.W.Duerig, K.N.Melton, D.Stöckel, C.M.Wayman (Eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London (1990) 36.Search in Google Scholar
[44] L.C.Brinson, I.Schmidt, R.Lammering: J. Mech. Phys. Solids52 (2003) 1549.10.1016/j.jmps.2004.01.001Search in Google Scholar
© 2010, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Prof. Dr. Monika Feller-Kniepmeier 80th birthday
- Basic
- Model calculation of inoculation and experimental verification in two alloy-systems
- Enrichment of boron at grain boundaries of platinum-based alloys determined by electron energy loss spectroscopy in a transmission electron microscope
- Measurement of the lattice misfit of Pt–Al–Cr superalloy by convergent beam electron diffraction (CBED)
- Microstructural and micromechanical characterisation of a Pt–Al–Cr–Ni–Re alloy by means of transmission electron microscopy and nanoindentation
- X-ray reflections from the γ/γ′-microstructure of nickel-base superalloys: effect of the plane tilting
- Physicochemical properties and creep strength of a single crystal of nickel-base superalloy containing rhenium and ruthenium
- Interdependence between glass stability and phase formation sequence during crystallization of Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass
- On the formation of λ-MnAl4
- Applied
- Development of Ni–Mn-based alloys for the fast epitaxial braze-repair of single-crystalline nickel-based superalloys
- Influence of heat treatment and microstructure on the tensile pseudoelastic response of an Ni-rich NiTi shape memory alloy
- Microstructural stability of an Ni–Mo based Hastelloy after 10 MeV electron irradiation at high temperature
- Oxidation behaviour of TiAl-based intermetallic coatings on γ-TiAl alloys
- Oxidation and fatigue behaviour of γ-TiAl coated with HIPIMS CrAlYN/CrN nanoscale multilayer coatings and EB-PVD thermal barrier coatings
- On the stress corrosion cracking behaviour of 6XXX series aluminium alloys
- Investigation of surface film nanostructure and assessment of its impact on friction force stabilization during automotive braking
- Creep strength of a binary Al62Ti38 alloy
- Bowing out of a dislocation from wall of persistent slip bands (PSB)
- Effect of martensite volume fraction on mechanical properties of dual-phase treated AISI-4012 sheet steels
- The joint properties of dissimilar aluminum plates joined by friction stir welding
- Notification
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Prof. Dr. Monika Feller-Kniepmeier 80th birthday
- Basic
- Model calculation of inoculation and experimental verification in two alloy-systems
- Enrichment of boron at grain boundaries of platinum-based alloys determined by electron energy loss spectroscopy in a transmission electron microscope
- Measurement of the lattice misfit of Pt–Al–Cr superalloy by convergent beam electron diffraction (CBED)
- Microstructural and micromechanical characterisation of a Pt–Al–Cr–Ni–Re alloy by means of transmission electron microscopy and nanoindentation
- X-ray reflections from the γ/γ′-microstructure of nickel-base superalloys: effect of the plane tilting
- Physicochemical properties and creep strength of a single crystal of nickel-base superalloy containing rhenium and ruthenium
- Interdependence between glass stability and phase formation sequence during crystallization of Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass
- On the formation of λ-MnAl4
- Applied
- Development of Ni–Mn-based alloys for the fast epitaxial braze-repair of single-crystalline nickel-based superalloys
- Influence of heat treatment and microstructure on the tensile pseudoelastic response of an Ni-rich NiTi shape memory alloy
- Microstructural stability of an Ni–Mo based Hastelloy after 10 MeV electron irradiation at high temperature
- Oxidation behaviour of TiAl-based intermetallic coatings on γ-TiAl alloys
- Oxidation and fatigue behaviour of γ-TiAl coated with HIPIMS CrAlYN/CrN nanoscale multilayer coatings and EB-PVD thermal barrier coatings
- On the stress corrosion cracking behaviour of 6XXX series aluminium alloys
- Investigation of surface film nanostructure and assessment of its impact on friction force stabilization during automotive braking
- Creep strength of a binary Al62Ti38 alloy
- Bowing out of a dislocation from wall of persistent slip bands (PSB)
- Effect of martensite volume fraction on mechanical properties of dual-phase treated AISI-4012 sheet steels
- The joint properties of dissimilar aluminum plates joined by friction stir welding
- Notification
- DGM News