Startseite Technik Creep properties from indentation tests by analytical and numerical techniques
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Creep properties from indentation tests by analytical and numerical techniques

  • Matteo Galli und Michelle L. Oyen
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Analytical and numerical methods for the identification of creep properties of two polymers and indium from indentation tests are compared. Creep indentation experiments are performed at fixed peak force following ramp loading. The experiments are modeled both by analytical techniques and by finite elements and the models are integrated in an identification routine. The assumed mechanical behavior allows for a satisfactory fit of the experimental data. For the considered viscoelastic materials analytical and numerical modeling are equivalent whereas for indium finite element modeling is to be preferred since the analytical model is not representative at the large levels of plastic strain experimentally obtained.


* Correspondence address, Dr. Michelle Oyen, Cambridge University Engineering Dept., Trumpington St., Cambridge, CB2 1PZ, UK, Tel.: +44 1223 332 680, Fax: +44 1223 339 263, E-mail:

References

[1] J.Jachowicz, R.McMullen, D.Prettypaul: Skin Res. Technol.13 (2000) 299.Suche in Google Scholar

[2] G.Cseh, J.Bar, H.J.Gudladt, J.Lendvai, A.Juhasz: Mater. Sci. Eng. A-Struct.272 (1999) 145.Suche in Google Scholar

[3] M.L.Oyen: J. Mater. Res.23 (2008) 130710.1557/JMR.2008.0156Suche in Google Scholar

[4] M.Galli, K.S.C.Comley, T.A.V.Shean, M.L.Oyen: J. Mater. Res.24 (2009), to appear, March 2009.Suche in Google Scholar

[5] N.Huber, C.Tsakamakis: J. Mech. Phys. Solids47 (1999) 1569.Suche in Google Scholar

[6] N.Huber, C.Tsakamakis: J. Mech. Phys. Solids47 (1999) 1589.Suche in Google Scholar

[7] M.L.Oyen: Acta Mater.55 (2007) 3633.10.1016/j.actamat.2006.12.031Suche in Google Scholar

[8] J.Cugnoni, J.Botsis, J.Sivasubramanian, J.Janczak-Rusch: Fatigue Fract. Eng. M.30 (2007) 387.Suche in Google Scholar

[9] F.Lei, J.A.Z.Szeri: J. Biomech.40 (2007) 936.10.1115/1.2796056Suche in Google Scholar PubMed

[10] M.Galli, J.Cugnoni, J.Botsis, J.Janczak-Rusch: Compos. Part A-Appl. S.39 (2008) 972.Suche in Google Scholar

[11] R.S.Lakes: Viscoelastic Solids CRC Press, Boca Raton, FL (1998).Suche in Google Scholar

[12] M.L.Oyen: Philos. Mag.86 (2006) 5625.10.1080/14786430600740666Suche in Google Scholar

[13] E.H.Lee, J.R.M.Radok: J. Appl. Mech.27 (1960) 438.10.1115/1.3408473Suche in Google Scholar

[14] A.F.Bower, N.A.Fleck, A.Needleman, N.Ogbonna: Proc. R. Soc. London A441 (1993) 97.Suche in Google Scholar

[15] A.C.Moore, D.Tabor: Br. J. Appl. Phys.3 (1952) 299.Suche in Google Scholar

[16] B.N.Lucas, W.C.Oliver: Metall. Mater. Trans. A30 (1999) 601.Suche in Google Scholar

Received: 2008-9-24
Accepted: 2009-2-2
Published Online: 2013-06-11
Published in Print: 2009-07-01

© 2009, Carl Hanser Verlag, München

Heruntergeladen am 2.2.2026 von https://www.degruyterbrill.com/document/doi/10.3139/146.110131/html
Button zum nach oben scrollen