Unconstrained solidification and characterisation of near-eutectic Al–Cu–Ag alloys
-
S. Ebzeeva
, E. Nagels und L. Froyen
Abstract
This study focuses on the microstructure formation in two Al – Cu – Ag alloys with near-eutectic composition on either side of the α(Al)/θ-Al2Cu groove. The alloys solidified equiaxially with two different cooling rates for each composition of alloy. The primary phases formed are α(Al) or θ-Al2Cu, but univariant and invariant eutectic reactions are common. In hypoeutectic samples macrosegregation of the α(Al) phase occurred. The univariant α(Al)/θ-Al2Cu eutectic in these samples is formed by coupled two-phase structures. The univariant eutectic in the samples, which exhibit primary θ-Al2Cu, grew partially competitively due to the α(Al) single phase instability.
It is suggested that the difference in solubility of the segregating element Ag in α(Al) and θ-Al2Cu phases and processing parameters such as cooling rates determine the resulting microstructure.
References
[1] I.Ohnaka, in: D.M.Davis (Sn. Ed.), ASM handbook, Vol. 15, American Society of Metals, Metals Park Ohio (1988) 136.Suche in Google Scholar
[2] L.van Vugt, L.Froyen: J. Mater. Proces. Technol.104(2000) 133. DOI:10.1016/S0924-0136 (00)00526-4Suche in Google Scholar
[3] S.Ozawa, T.Motegi: Mater. Lett.58 (2004) 2548. DOI:10.1016/j.matlet.2004.03.02710.1016/j.matlet.2004.03.027Suche in Google Scholar
[4] W.Kurz, D.J.Fisher: Inter. Metal. Rev.5-6 (1979) 177.Suche in Google Scholar
[5] D.C.McCartney, R.M.Jordan, J.D.Hunt: Metal. Trans. A11 (1980) 1251.Suche in Google Scholar
[6] M.F.X.Gigliotti, Jr., G.A.Colligan, G.L.F.Powell: Metal. Trans.1 (1970) 891.Suche in Google Scholar
[7] S.H.Han, R.Trivedi: Metal. Mater. Trans. A31 (2000) 1819.Suche in Google Scholar
[8] D.Ma, Y.A.Chang: Acta Mater.54 (2006) 1927. DOI:10.1016/j.actamat.2005.12.01510.1016/j.actamat.2005.12.015Suche in Google Scholar
[9] X.Hui, W.Dong, G.L.Chen, K.F.Yao: Acta Mater.55 (2007) 907. DOI:10.1016/actamat.2006.09.012Suche in Google Scholar
[10] G.Tammann: Z. Metallkd.25 (1933) 236.10.1002/j.1551-8833.1933.tb18233.xSuche in Google Scholar
[11] A.A.Botschwar: Z. Anorg. Allg. Chem.220 (1926) 334.10.1002/zaac.19342200313Suche in Google Scholar
[12] A.Kofler: Z. Metallkd.41 (1950) 221.10.1515/ijmr-1950-410801Suche in Google Scholar
[13] V.T.Witusiewicz, U.Hecht, S.G.Fries, S.Rex: J. Alloys Compd.387 (2005) 217. DOI:10.1016/j.jallcom.2004.06.07810.1016/j.jallcom.2004.06.078Suche in Google Scholar
[14] P.Schumacher, B.J.McKay: Journal Non-Cryst. Solids317 (2003) 123. DOI:10.1016/S0022-3093(02)01992-010.1016/S0022-3093(02)01992-0Suche in Google Scholar
[15] A.L.Greer, P.S.Cooper, M.W.Meredith, W.Schneider, P.Schumacher, J.A.Spittle, A.Tronche: Adv. Eng. Mater.5 (2003) 81. DOI: 10.1002/adem.20039001310.1002/adem.200390013Suche in Google Scholar
[16] J.De Wilde, E.Nagels, F.Lemoisson, L.Froyen: Mater. Sci. Eng. A413 (2005) 514. DOI:10.1016/j.msea.2005.08.17110.1016/j.msea.2005.08.171Suche in Google Scholar
[17] S.Ebzeeva, L.Froyen: Trans. Indian Ins. Met. (2007) 207.Suche in Google Scholar
[18] Y.S.Touloukian, R.K.Kirby, R.E.Taylor: Thermophysical properties of matter, 12IFI/Plenum, New York (1977) 2.Suche in Google Scholar
[19] J.De Wilde: PhD thesis, Department of Metallurgy and Material Engineering, Katholieke Universiteit Leuven (2005).Suche in Google Scholar
[20] D.R.Gaskell: An introduction to transport phenomena in material engineering, Macmillan, New York (1992).Suche in Google Scholar
[21] H.Yasuda, I.Ohnaka, K.Kawasaki, A.Sugiyama, T.Ohmichi, J.Iwane, K.Umetani: J. Cryst. Growth262 (2004) 645.DOI:10.1016/j.jcrysgro.2003.09.05210.1016/j.jcrysgro.2003.09.052Suche in Google Scholar
[22] R.H.Mathiesen, L.Arnberg: Mater. Sci. Eng. A413 (2005) 283. DOI:10.1016/j.msea.2005.08.16010.1016/j.msea.2005.08.160Suche in Google Scholar
[23] T.Schenk, H.Nguyen Thi, J.Gastaldi, G.Reinhart, V.Cristiglio, N.Mangelinck-Noël, H.Klein, J.Härtwig, B.Grushko, B.Billia, J.Baruchel: J. Cryst. Growth275 (2005) 201. DOI:10.1016/j.jcrysgro.2004.10.08110.1016/j.jcrysgro.2004.10.081Suche in Google Scholar
[24] R.H.Mathiesen, L.Arnberg, K.Ramsøkar, T.Weitkamp, C.Rau, A.Snigirev: Met. Trans. B33 (2002) 613.Suche in Google Scholar
[25] L.A.Dobrzanski, R.Maniara, J.Sokolowski, W.Kasprzak: J. Mater. Proces. Technol.191 (2007) 317.DOI:10.1016/j.jmatprotec.2007.03.09910.1016/j.jmatprotec.2007.03.099Suche in Google Scholar
[26] G.A.Chandwick: The Solidification of Metals, The Iron and Steel Intitute, London (1968) 138.Suche in Google Scholar
[27] L.M.Hogan: J. Aust. Inst.6 (1961) 279.Suche in Google Scholar
[28] M.F.X.Gigliotti, Jr., G.L.F.Powell, G.A.Colligan: Metal. Trans.1 (1970) 1038.Suche in Google Scholar
[29] S.M.Li, B.L.Jiang; B.L.Ma, H.Z.Fu: J. Cryst. Growth299 (2007) 178. DOI:10.1016/j.jcrysgro.2000.10.255Suche in Google Scholar
[30] E.Schell, R.Zimmermann: Z. Metallkd.48 (1957) 509.Suche in Google Scholar
[31] B.L.Jones, G.M.Weston, R.T.Southin: J. Cryst. Growth10 (1971) 313.Suche in Google Scholar
[32] W.Kurz: Z. Metalllkd69 (1978) 433.10.1515/ijmr-1978-690702Suche in Google Scholar
[33] R.S.Barclay, H.W.Kerr, P.Niessen: J. Mater. Sci.6 (1971) 1168.Suche in Google Scholar
[34] K.D.Lakeland, L.M.Hogan: The Solidification of Metals, The Iron and Steel Intitute, London (1968) 213.Suche in Google Scholar
[35] P.Gilgien, W.Kurz: Mater. Sci. Eng. A178 (1994) 199. DOI:10.1016/0921-5093(94)90543-610.1016/0921-5093(94)90543-6Suche in Google Scholar
[36] M.D.Rinaldi, R.M.Sharp, M.C.Flemings: Metal. Trans.3 (1972) 3139.Suche in Google Scholar
[37] G.Garmong: Metal. Trans.2 (1972) 2025.10.1007/BF02917528Suche in Google Scholar
[38] D.C.McCartney, J.D.Hunt, R.M.Jordan: Metal. Trans. A11 (1980) 1243.Suche in Google Scholar
[39] M.D.Nave, A.K.Dahle, D.H.StJohn: Acta Mater.50 (2002) 2837. DOI:10.1016/S1359-6454(02)00104-010.1016/S1359-6454(02)00104-0Suche in Google Scholar
[40] S.T.Bluni, M.R.Notis, A.R.Marder: Acta Mater.43 (1995) 1775. DOI:10.1016/095-7151(94)00397-ZSuche in Google Scholar
[41] R.S.Barclay, P.Niessen, H.W.Kerr: J. Cryst. Growth20 (1973) 175.Suche in Google Scholar
[42] M.-J.Suk, G.-H.Choi, I.-H.Moon: J. Cryst. Growth123 (1992) 5. DOI:10.1016/0022-0248(92)90005-410.1016/0022-0248(92)90005-4Suche in Google Scholar
[43] M.-J.Suk, K.Leonartz: J. Cryst. Growth213, (2000) 141.DOI:10.1016/S0022-0248 (00)00357-2Suche in Google Scholar
[44] V.T.Swamy, S.Ranganathan, K.Chattopadhyaya: Surf. Coat. Technol.71 (1995) 129. DOI:10.1016/0257-8972(94)01011-710.1016/0257-8972(94)01011-7Suche in Google Scholar
[45] W.Kurz, D.J.Fisher: Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf (1992).Suche in Google Scholar
[46] U.Hecht, L.Gránásy, T.Pusztai, B.Böttger, M.Apel, V.Witusiewicz, L.Ratke, J.De Wilde, L.Froyen, D.Camel, B.Drevet, G.Faivre, S.G.Fries, B.Legendre, S.Rex: Mater. Sci. Eng. R46 (2004) 1. DOI:10.1016/S0927-796X(04)00091-910.1016/S0927-796X(04)00091-9Suche in Google Scholar
[47] M.D.Rinaldi, R.M.Sharp, M.C.Flemings: Metal. Trans.3 (1972) 3133.Suche in Google Scholar
© 2008, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Basic
- A model to calculate the viscosity of silicate melts
- A model to calculate the viscosity of silicate melts
- A note on the application of the phase rule
- Thermodynamic properties of liquid silver–indium–tin alloys determined from emf measurements
- Unconstrained solidification and characterisation of near-eutectic Al–Cu–Ag alloys
- Tensile properties of L12 intermetallic foils fabricated by cold rolling
- Microstructural control of FeB-inoculated mottled low-alloy white iron by a design of experiments approach
- Applied
- Dislocation structure and crystallite size distribution in lath martensite determined by X-ray diffraction peak profile analysis
- Effect of minor addition of Pb upon interfacial reactions and mechanical properties at Sn-3.0Ag-0.5Cu/Cu and Sn-58Bi/Cu solder joints
- Elastic properties of braided ceramic matrix composites
- The influence of microstructural characteristics and contaminants on the mechanical properties and fracture topography of low cost Ti6Al4V alloy
- Microstructure and room temperature mechanical properties of Hf and Sn-doped Nb-20Ti-5Cr-3Al-18Si alloy
- The effect of alloying elements on constrained carbon equilibrium due to a quench and partition process
- Hardfacing behavior of Cr–Ni stainless steel with Co-based super alloys
- Development of SMD 32.768 kHz tuning fork-type crystals
- Notification
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Basic
- A model to calculate the viscosity of silicate melts
- A model to calculate the viscosity of silicate melts
- A note on the application of the phase rule
- Thermodynamic properties of liquid silver–indium–tin alloys determined from emf measurements
- Unconstrained solidification and characterisation of near-eutectic Al–Cu–Ag alloys
- Tensile properties of L12 intermetallic foils fabricated by cold rolling
- Microstructural control of FeB-inoculated mottled low-alloy white iron by a design of experiments approach
- Applied
- Dislocation structure and crystallite size distribution in lath martensite determined by X-ray diffraction peak profile analysis
- Effect of minor addition of Pb upon interfacial reactions and mechanical properties at Sn-3.0Ag-0.5Cu/Cu and Sn-58Bi/Cu solder joints
- Elastic properties of braided ceramic matrix composites
- The influence of microstructural characteristics and contaminants on the mechanical properties and fracture topography of low cost Ti6Al4V alloy
- Microstructure and room temperature mechanical properties of Hf and Sn-doped Nb-20Ti-5Cr-3Al-18Si alloy
- The effect of alloying elements on constrained carbon equilibrium due to a quench and partition process
- Hardfacing behavior of Cr–Ni stainless steel with Co-based super alloys
- Development of SMD 32.768 kHz tuning fork-type crystals
- Notification
- DGM News