A model to calculate the viscosity of silicate melts
-
A. Nicholas Grundy
, Honqin Liu , In-Ho Jung , Sergei A. Decterov and Arthur D. Pelton
Abstract
A model has been developed that links the viscosities of silicate melts to their thermodynamic properties. Over the past several years, through critical evaluation of all available thermodynamic and phase equilibrium data, we have developed a quantitative thermodynamic description of multicomponent silicate melts using the Modified Quasichemical Model for short-range ordering. The local structure of the liquid, in terms of the bridging behavior of oxygen, calculated using our thermodynamic model allows us to characterize the structure of the liquid semi-quantitatively using the concepts of Q-species and connectivity of Q-species. The viscosity is modeled by optimizing viscosity parameters that are related to the structure of the liquid. The viscosity of pure liquid silica is modeled using four model parameters and every other unary liquid is modeled using two. The viscosity of all binary liquids is reproduced within experimental accuracy by optimizing one or at most two binary viscosity parameters for each system. In the present article the equations for the viscosity model are derived and analyses for the experimentally well-established systems CaO – SiO2 MgO – SiO2, NaO0.5 – SiO2, KO0.5 – SiO2 and AlO1.5 – SiO2 are presented. This is the first step in the development of a predictive model for the viscosity of multicomponent silicate melts that will be presented in part II.
References
[1] A.D.Pelton, M.Blander: Metall. Trans. B17 (1986) 805–815.10.1007/BF02657144Search in Google Scholar
[2] M.L.Kapoor, M.G.Frohberg: Proceedings of the International Symposium Chemical Metallurgy of Iron and Steel, Sheffield, England, The Institute of Metals, London (1971) 17–22.Search in Google Scholar
[3] L.Zhang, S.Jahanshahi: Metall. Mater. Trans. B29 (1998) 177–186.10.1007/s11663-998-0020-3Search in Google Scholar
[4] A.Kondratiev, E.Jak: Metall. Trans. B36 (2005) 623–638.10.1007/s11663-005-0053-9Search in Google Scholar
[5] M.Nakamoto, J.Lee, T.Tanaka: ISIJ Int.45 (2005) 651–656.10.2355/isijinternational.45.651Search in Google Scholar
[6] A.D.Pelton, S.A.Decterov, G.Eriksson, C.Robelin, Y.Dessureault: Metall. Mater. Trans. B31 (2000) 651–659.10.1007/s11663-000-0103-2Search in Google Scholar
[7] C.W.Bale, P.Chartrand, S.Decterov, G.Eriksson, K.Hack, R.B.Mahfoud, J.Melançon, A.D.Pelton, S.Petersen: Calphad26 (2002) 189–228; www.factsage.com10.1016/S0364-5916(02)00035-4Search in Google Scholar
[8] C.J.B.Fincham, F.D.Richardson: Proc. Roy. Soc. (London)223 (1954) 40–62.Search in Google Scholar
[9] P.Wu, G.Eriksson, A.D.Pelton: J. Am. Ceram. Soc.76 (1993) 2059–64.10.1111/j.1151-2916.1993.tb08333.xSearch in Google Scholar
[10] G.Eriksson, P.Wu, M.Blander, A.D.Pelton: Can. Metall. Q.33 (1994) 13–21.10.1179/cmq.1994.33.1.13Search in Google Scholar
[11] P.Wu, G.Eriksson, A.D.Pelton, M.Blander: ISIJ Int.33 (1993) 26–35.10.2355/isijinternational.33.26Search in Google Scholar
[12] G.Eriksson, A.D.Pelton: Metall. Trans. B24 (1993) 807–816.10.1007/BF02663141Search in Google Scholar
[13] B.Mysen: Eur. J. Mineral.15 (2003) 781–802.10.1127/0935-1221/2003/0015-0781Search in Google Scholar
[14] P.L.Lin, A.D.Pelton: Metall. Trans. B10 (1979) 667–675.10.1007/BF02662569Search in Google Scholar
[15] J.D.Frantz, B.O.Mysen: Chem. Geol.121 (1995) 155–176.10.1016/0009-2541(94)00127-TSearch in Google Scholar
[16] H.Maekawa, T.Maekawa, K.Kawamura, T.Yokokawa: J. Non-Cryst. Solids127 (1991) 53–64.10.1016/0022-3093(91)90400-ZSearch in Google Scholar
[17] W.E.Halter, B.O.Mysen: Chem. Geol.213 (2004) 115–123.10.1016/j.chemgeo.2004.08.036Search in Google Scholar
[18] T.Yano, S.Shibata, T.Maehara: J. Am. Ceram. Soc.89 (2006) 89–95.10.1111/j.1551-2916.2005.00815.xSearch in Google Scholar
[19] J.Machacek, O.Gedeon: Ceramics-Silikaty47 (2003) 45–49.Search in Google Scholar
[20] J.Machacek, O.Gedeon, M.Liska: J. Non-Cryst. Solids352 (2006) 2173–2179.10.1016/j.jnoncrysol.2006.01.036Search in Google Scholar
[21] J.F.Bacon, A.A.Hasapis: J. Appl. Phys.30 (1959) 1470–1471.10.1063/1.1735377Search in Google Scholar
[22] J.F.Bacon, A.A.Hasapis, J.W.Wholley, Jr.: Phys. Chem. Glasses1 (1960) 90–98.Search in Google Scholar
[23] D.W.Bowen, R.W.Taylor: Am. Ceram. Soc. Bull.57 (1978) 818–819.Search in Google Scholar
[24] J.O.M.Bockris, J.D.Mackenzie, J. A.Kitchener: Trans. Faraday Soc.51 (1955) 1734–1748.10.1039/tf9555101734Search in Google Scholar
[25] G.Urbain, Y.Bottinga, P.Richet: Geochim. Cosmochim. Acta46 (1982) 1061–1072.10.1016/0016-7037(82)90059-XSearch in Google Scholar
[26] R.Rossin, J.Bersan, G.Urbain: Rev. Hautes Temp. Refractaires1 (1964) 159–170.Search in Google Scholar
[27] G.Hofmaier: Berg- und Huettenmaennische Monatshefte113 (1968) 270–81.Search in Google Scholar
[28] N.V.Solomin: J. Phys. Chem. (U.S.S.R.)14 (1940) 235–243.Search in Google Scholar
[29] R.Bruckner: Z. Glaskunde37 (1964) 413–425.Search in Google Scholar
[30] T.Kimura: Japanese J. Appl. Phys.8 (1969) 1397–1403.10.1143/JJAP.8.1397Search in Google Scholar
[31] E.H.Fontana, W.A.Plummer: Phys. Chem. Glasses7 (1966) 139–146.Search in Google Scholar
[32] J.Hlavac, T.K.Sen: Silikaty12 (1968) 213–220.Search in Google Scholar
[33] J.Yovanovitch: Compt. Rend.253 (1961) 853–855.Search in Google Scholar
[34] S.D.Brown, S.S.Kistler: J. Am. Ceram. Soc.42 (1959) 263–270.10.1111/j.1151-2916.1959.tb12951.xSearch in Google Scholar
[35] M.P.Volarovich, A.A.Leont'eva: J. Soc. Glass Tech.20 (1936) 139–43.Search in Google Scholar
[36] G.Hetherington, K.H.Jack, J.C.Kennedy: Phys. Chem. Glasses5 (1964) 130–136.Search in Google Scholar
[37] G.Hofmaier, G.Urbain: Sci. Ceram.4 (1968) 25–32.Search in Google Scholar
[38] R.H.Doremus: J. Appl. Phys.92 (2002) 7619–7629.10.1063/1.1515132Search in Google Scholar
[39] G.Urbain: Rev. Int. Hautes Tempér. Réfract., Fr.19 (1982) 55–57.Search in Google Scholar
[40] P.Kozakevitch: Rev. Métall.57 (1960) 149–160.10.1051/metal/196057020149Search in Google Scholar
[41] V.P.Elyutin, V.I.Kostikov, B.S.Mitin, Yu.A.Nagibin: Zhurnal Fizicheskoi Khimii43 (1969) 579–83.Search in Google Scholar
[42] R.A.Blomquist, J.K.Fink, L.Leibowitz: Am. Ceram. Soc. Bull.57 (1978) 522.Search in Google Scholar
[43] F.-Z.Ji, D.Sichen, S.Seetharaman: Metall. Mater. Trans. B28 (1997) 827–834.10.1007/s11663-997-0010-xSearch in Google Scholar
[44] J.S.Machin, D.L.Hanna: J. Am. Ceram. Soc.28 (1945) 310–316.10.1111/j.1151-2916.1945.tb14500.xSearch in Google Scholar
[45] T.Licko, V.Danek: Phys. Chem. Glasses27 (1986) 22–26.Search in Google Scholar
[46] I.I.Gul'tyai: Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Metall. Toplivo5 (1962) 52–65.Search in Google Scholar
[47] J.S.Machin, T.B.Yee: J. Am. Ceram. Soc.31 (1948) 200–204.10.1111/j.1151-2916.1948.tb14290.xSearch in Google Scholar
[48] J.S.Machin, T.B.Yee, D.L.Hanna: J. Am. Ceram. Soc.35 (1952) 322–325.10.1111/j.1151-2916.1952.tb13057.xSearch in Google Scholar
[49] J.S.Machin, T.B.Yee: J. Am. Ceram. Soc.37 (1954) 177–185.10.1111/j.1151-2916.1954.tb14019.xSearch in Google Scholar
[50] V.H.Schenck, M.G.Frohberg: Arch. Eisenhuettenwes.33 (1962) 421–425.Search in Google Scholar
[51] J.O.Bockris, D.C.Lowe: Proc. Roy. Soc. London, Ser. A226 (1954) 423–435.10.1098/rspa.1954.0266Search in Google Scholar
[52] P.Drissen, H.J.Engell, D.Janke: Metall. Slags Fluxes, Int. Symp., Proc., 2nd (1984), Metall. Soc. AIME, Warrendale, Pa (1984) 583–592.Search in Google Scholar
[53] D.R.Neuville: Chem. Geol.229 (2006) 28–41.10.1016/j.chemgeo.2006.01.008Search in Google Scholar
[54] T.Saito, Y.Kawai: Tetsu to Hagane38 (1952) 81–86.10.2355/tetsutohagane1915.38.2_81Search in Google Scholar
[55] D.J.Lacks, D.B.Rear, J.A.Van Orman: Geochim. Cosmochim. Acta71 (2007) 1312–1323.10.1016/j.gca.2006.11.030Search in Google Scholar
[56] M.Kawahara, K.Morinaga, T.Yanagase: J. Jpn. Inst. Metals41 (1977) 1047–1052.10.2320/jinstmet1952.41.10_1047Search in Google Scholar
[57] G.Urbain: Rev. Int. Hautes Tempér. Réfract., Fr.22 (1985) 39–45.Search in Google Scholar
[58] S.Sumita, H.Takano, K.Morinaga, T.Yanagase: J. Jpn. Inst. Met.46 (1982) 280–285.10.2320/jinstmet1952.46.3_280Search in Google Scholar
[59] T.Kou, K.Mizoguchi, Y.Suginohara: Nippon Kinzoku Gakkaishi42 (1978) 775–781.Search in Google Scholar
[60] K.-D.Kim, S.-H.Lee: Journal of the Ceramic Society of Japan105 (1997) 827–832.10.2109/jcersj.105.827Search in Google Scholar
[61] H.R.Lillie: J. Am. Ceram. Soc.22 (1939) 367–74.10.1111/j.1151-2916.1939.tb19482.xSearch in Google Scholar
[62] G.S.Meiling, D.R.Uhlmann: Phys. Chem. Glasses8 (1967) 62–68.Search in Google Scholar
[63] K.Hunold, R.Brueckner: Glastechn. Ber.53 (1980) 149–161.Search in Google Scholar
[64] M.Liska, P.Simurka, J.Antalik, P.Perichta: Chem. Geol.128 (1996) 199–206.10.1016/0009-2541(95)00173-5Search in Google Scholar
[65] R.Ota, T.Wakasugi, W.Kawamura, B.Tuchiya, J.Fukunaga: J. Non-Cryst. Solids188 (1995) 136–146.10.1016/0022-3093(95)00185-9Search in Google Scholar
[66] L.Shartsis, S.Spinner, W.Capps: J. Am. Ceram. Soc.35 (1952) 155–60.10.1111/j.1151-2916.1952.tb13090.xSearch in Google Scholar
[67] T.P.Shvaiko-Shvaikovskaya, O.V.Mazurin, Z.S.Bashun: Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy7 (1971) 128–131.Search in Google Scholar
[68] G.Heidtkamp, K.Endell: Glastech. Ber.14 (1936) 89–103.Search in Google Scholar
[69] S.English: Journal of the Society of Glass Technology8 (1924) 205–48.Search in Google Scholar
[70] E.W.Washburn, G.R.Shelton, E.E.Libman: Bull.140 (1924) 71 pp.Search in Google Scholar
[71] E.Eipelauer, A.More: Radex Rundsch.4 (1960) 230–238.Search in Google Scholar
[72] H.J.Pohlmann: Glastech. Ber.49 (1976) 177–182.Search in Google Scholar
[73] K.Mizoguchi, K.Okamoto, Y.Suginohara: Nippon Kinzoku Gakkaishi46 (1982) 1055–1060.Search in Google Scholar
[74] E.Asayama, H.Takebe, K.Morinaga: ISIJ Int.33 (1993) 233–238.10.2355/isijinternational.33.233Search in Google Scholar
[75] A.Kondratiev, P.C.Hayes, E.Jak: ISIJ Int.46 (2006) 359–367.10.2355/isijinternational.46.359Search in Google Scholar
© 2008, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Basic
- A model to calculate the viscosity of silicate melts
- A model to calculate the viscosity of silicate melts
- A note on the application of the phase rule
- Thermodynamic properties of liquid silver–indium–tin alloys determined from emf measurements
- Unconstrained solidification and characterisation of near-eutectic Al–Cu–Ag alloys
- Tensile properties of L12 intermetallic foils fabricated by cold rolling
- Microstructural control of FeB-inoculated mottled low-alloy white iron by a design of experiments approach
- Applied
- Dislocation structure and crystallite size distribution in lath martensite determined by X-ray diffraction peak profile analysis
- Effect of minor addition of Pb upon interfacial reactions and mechanical properties at Sn-3.0Ag-0.5Cu/Cu and Sn-58Bi/Cu solder joints
- Elastic properties of braided ceramic matrix composites
- The influence of microstructural characteristics and contaminants on the mechanical properties and fracture topography of low cost Ti6Al4V alloy
- Microstructure and room temperature mechanical properties of Hf and Sn-doped Nb-20Ti-5Cr-3Al-18Si alloy
- The effect of alloying elements on constrained carbon equilibrium due to a quench and partition process
- Hardfacing behavior of Cr–Ni stainless steel with Co-based super alloys
- Development of SMD 32.768 kHz tuning fork-type crystals
- Notification
- DGM News
Articles in the same Issue
- Contents
- Contents
- Basic
- A model to calculate the viscosity of silicate melts
- A model to calculate the viscosity of silicate melts
- A note on the application of the phase rule
- Thermodynamic properties of liquid silver–indium–tin alloys determined from emf measurements
- Unconstrained solidification and characterisation of near-eutectic Al–Cu–Ag alloys
- Tensile properties of L12 intermetallic foils fabricated by cold rolling
- Microstructural control of FeB-inoculated mottled low-alloy white iron by a design of experiments approach
- Applied
- Dislocation structure and crystallite size distribution in lath martensite determined by X-ray diffraction peak profile analysis
- Effect of minor addition of Pb upon interfacial reactions and mechanical properties at Sn-3.0Ag-0.5Cu/Cu and Sn-58Bi/Cu solder joints
- Elastic properties of braided ceramic matrix composites
- The influence of microstructural characteristics and contaminants on the mechanical properties and fracture topography of low cost Ti6Al4V alloy
- Microstructure and room temperature mechanical properties of Hf and Sn-doped Nb-20Ti-5Cr-3Al-18Si alloy
- The effect of alloying elements on constrained carbon equilibrium due to a quench and partition process
- Hardfacing behavior of Cr–Ni stainless steel with Co-based super alloys
- Development of SMD 32.768 kHz tuning fork-type crystals
- Notification
- DGM News