Startseite Technik In-situ reaction synthesis and decomposition of Ta2AlC
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

In-situ reaction synthesis and decomposition of Ta2AlC

  • Chunfeng Hu , Jie Zhang , Yiwang Bao , Jingyang Wang , Meishuan Li und Yanchun Zhou
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Dense bulk Ta2AlC ceramic was fabricated by in-situ reaction/hot pressing of Ta, Al and C powders. The reaction path and effects of initial composition on the purity were investigated. It was found that Ta2AlC formed through the reactions between AlTa2 and graphite, or between Ta5Al3C, TaC and graphite at 1500–1550°C. By modifying the molar ratio of the initial Ta, Al, and C powders, single-phase Ta2AlC was prepared at 1550°C under an Ar atmosphere with an optimized composition of Ta: Al: C = 2: 1.2: 0.9. The lattice parameter and a new set of X-ray diffraction data of Ta2AlC were obtained. In addition, Ta2AlC was reported unstable above 1600°C and decomposed to Ta4AlC3, and then to TaCx.


* Correspondence address, Dr. Yanchun Zhou, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China, Tel.: +86 24 2397 1765, Fax: +86 24 2389 1320, E-mail:

References

[1] M.W.Barsoum: Prog. Solid State Chem.28 (2000) 201.10.1016/S0079-6786(00)00006-6Suche in Google Scholar

[2] M.W.Barsoum, T.El-Raghy: J. Am. Ceram. Soc.79 (1996) 1953.10.1111/j.1151-2916.1996.tb08018.xSuche in Google Scholar

[3] M.W.Barsoum, D.Brodkin, T.El-Raghy: Scripta Mater.36 (1997) 535.10.1016/S1359-6462(96)00418-6Suche in Google Scholar

[4] M.W.Barsoum, T.El-Raghy: Metall. Mater. Trans. A30 (1999) 363.10.1007/s11661-999-0325-0Suche in Google Scholar

[5] M.W.Barsoum, T.Zhen, S.R.Kalidindi, M.Radovic, A.Murugaiah: Nature Mater.2 (2003) 107.10.1038/nmat814Suche in Google Scholar

[6] H.-I.Yoo, M.W.Barsoum, T.El-Raghy: Nature407 (2000) 581.10.1038/35036686Suche in Google Scholar

[7] I.M.Low, S.K.Lee, B.R.Lawn: J. Am. Ceram. Soc.81 (1998) 225.10.1111/j.1151-2916.1998.tb02320.xSuche in Google Scholar

[8] I.M.Low: J. Eur. Ceram. Soc.18 (1998) 709.10.1016/S0955-2219(97)00201-XSuche in Google Scholar

[9] X.H.Wang, Y.C.Zhou: Acta Mater.50 (2002) 3141.Suche in Google Scholar

[10] M.W.Barsoum, M.Ali, T.El-Raghy: Metall. Mater. Trans. A31 (2000) 1857.10.1007/s11661-006-0243-3Suche in Google Scholar

[11] Y.C.Zhou, X.H.Wang: Mater. Res. Innovat.5 (2001) 87.10.1007/s100190100132Suche in Google Scholar

[12] X.H.Wang, Y.C.Zhou: Z. Metallkd.93 (2002) 66.Suche in Google Scholar

[13] M.W.Barsoum, I.Salama, T.El-Raghy, J.Golczewski, W.D.Porter, H.Wang, H.J.Seifert, F.Aldinger: Metall. Mater. Trans. A33 (2002) 2775.10.1007/s11661-002-0262-7Suche in Google Scholar

[14] I.Salama, T.El-Raghy, M.W.Barsoum: J. Alloys Compd.347 (2002) 271.10.1016/S0925-8388(02)00756-9Suche in Google Scholar

[15] I.Salama, T.El-Raghy, M.W.Barsoum: J. Electrochem. Soc.150 (2003) 1.10.1149/1.1545461Suche in Google Scholar

[16] S.Gupta, M.W.Barsoum: J. Electrochem. Soc.151 (2004) 24.10.1149/1.1639160Suche in Google Scholar

[17] Z.J.Lin, Y.C.Zhou, M.S.Li, J.Y.Wang: Z. Metallkd.96 (2005) 291.Suche in Google Scholar

[18] W.Jeitschko, H.Nowotny, F.Benesovky: Monatsh. Chem.94 (1963) 672.10.1007/BF00913068Suche in Google Scholar

[19] Z.M.Sun, S.Li, R.Ahujab, J.M.Schneider: Solid State Commun.129 (2004) 589.10.1016/j.ssc.2003.12.008Suche in Google Scholar

[20] B.Manoun, R.P.Gulve, S.K.Saxena, S.Gupta, M.W.Barsoum, C.S.Zha: Phys. Rev. B73 (2006) 24110.10.1103/PhysRevB.73.024110Suche in Google Scholar

[21] Z.J.Lin, M.J.Zhuo, Y.C.Zhou, M.S.Li, J.Y.Wang: J. Am. Ceram. Soc.89 (2006) 3765.10.1111/j.1551-2916.2006.01303.xSuche in Google Scholar

[22] S.Gupta, D.Filimonov, M.W.Barsoum: J. Am. Ceram. Soc.89 (2006) 2974.Suche in Google Scholar

[23] Y.C.Zhou, Z.M.Sun, S.Q.Chen, Y.Zhang: Mater. Res. Innovat.2 (1998) 142.10.1007/s100190050076Suche in Google Scholar

[24] J.Emmerlich, D.Music, P.Eklund, O.Wilhelmsson, U.Jansson, J.M.Schneider, H.Högberg, L.Hultman: Acta Mater.55 (2007) 1479.10.1016/j.actamat.2006.10.010Suche in Google Scholar

[25] C.Racault, F.Langlais, R.Naslain: J. Mater. Sci.29 (1994) 3384.10.1007/BF00352037Suche in Google Scholar

[26] J.P.Palmquist, T.El-Raghy, J.Howing, O.Wilhemsson, M.Sundberg: 30th Intern. Conf. Advanced Ceram. & Composites 2006. Abstract #ICACC-S1-184-2006.Suche in Google Scholar

[27] B.Manoun, S.K.Saxena, T.El-Raghy, M.W.Barsoum: Appl. Phys. Lett.88 (2006) 201902.10.1063/1.2202387Suche in Google Scholar

[28] Z.J.Lin, M.J.Zhuo, Y.C.Zhou, M.S.Li, J.Y.Wang: J. Mater. Res.21 (2006) 2587.10.1557/jmr.2006.0310Suche in Google Scholar

[29] J.C.Schuster, H.Nowotny: Z. Metallkd.71 (1980) 341.Suche in Google Scholar

[30] Z.J.Lin, M.J.Zhuo, Y.C.Zhou, M.S.Li, J.Y.Wang: Acta Mater.54 (2006) 1009.10.1016/j.actamat.2005.10.028Suche in Google Scholar

[31] T.El-Raghy, M.W.Barsoum: J. Am. Ceram. Soc.82 (1999) 2849.10.1111/j.1151-2916.1999.tb02166.xSuche in Google Scholar

[32] X.H.Wang, Y.C.Zhou: J. Mater. Chem.12 (2002) 455.10.1039/b108685eSuche in Google Scholar

[33] A.G.Zhou, C.A.Wang, Y.Huang: Mater. Sci. Eng. A352 (2003) 333.10.1016/S0921-5093(02)00937-1Suche in Google Scholar

[34] Y.Yosida, I.Oguro: Physica C434 (2006) 138.10.1016/j.physc.2005.12.038Suche in Google Scholar

[35] H.Wiesenberger, W.Lengauer, P.Ettmayer: Acta Mater.46 (1998) 651.10.1016/S1359-6454(97)00204-8Suche in Google Scholar

[36] O.Yu.KhyzhunV.A.Kolyagin: J. Alloys Compd.363 (2004) 32.10.1016/S0925-8388(03)00472-9Suche in Google Scholar

[37] J.Zhang, J.Y.Wang, Y.C.Zhou: Acta Mater.55 (2007) 4381.10.1016/j.actamat.2007.03.033Suche in Google Scholar

Received: 2007-5-20
Accepted: 2007-10-11
Published Online: 2013-06-11
Published in Print: 2008-01-01

© 2008, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Prof. Dr.-Ing. habil. Dr.-Ing. E. h. Werner Schatt zum 85. Geburtstag
  5. Basic
  6. In-situ reaction synthesis and decomposition of Ta2AlC
  7. A new theoretical equation for temperature dependent self-diffusion coefficients of pure liquid metals
  8. Thermodynamic characterization of liquid alloys with demixing tendency: Bi–Ga
  9. Space charge effects in confined ceramic systems
  10. Solute transport and phase composition in an Al–Mg–Si alloy solidified under conditions of forced flow
  11. Evidence of α → ω phase transition in titanium after high pressure torsion
  12. Thermodynamic properties and elastic constants of Nd–Mg intermetallics: a molecular dynamics study
  13. Microstructure, texture and mechanical properties of the magnesium alloy AZ31 processed by ECAP
  14. Applied
  15. Effect of solidification microstructure and Ca additions on creep strength of magnesium alloy AZ91 processed by Thixomolding
  16. Magnetic hardening mechanism of PrCo5-based ribbons with C addition prepared by melt spinning
  17. Studies on the exchange and dipolar couplings in Nd2Fe14B/α-Fe
  18. Microstructural characteristics and elevated temperature wear of Ti-11Si-16Al alloy
  19. Nickel coating on some organic and carbon fibres by chemical plating
  20. Wear and corrosion properties of nanocrystalline coatings on stainless steel produced by plasma electrolytic nitrocarburizing
  21. The characterisation of microstructural changes in rapidly solidified Al–Fe alloys through measurement of their electrical resistance
  22. Solid inclusion cakes formed during pressure filtration tests of liquid aluminum alloys
  23. Performance of Ni/YSZ cermet cathode prepared by mechanical alloying for high temperature electrolysis of water vapor (steam): effect of anode and cathode thicknesses on the efficiency of hydrogen production
  24. Review
  25. Practical aspects and implications of interfaces in glass-ceramics: a review
  26. Notifications
  27. DGM News
Heruntergeladen am 2.1.2026 von https://www.degruyterbrill.com/document/doi/10.3139/146.101598/html
Button zum nach oben scrollen