Home Studies on the exchange and dipolar couplings in Nd2Fe14B/α-Fe
Article
Licensed
Unlicensed Requires Authentication

Studies on the exchange and dipolar couplings in Nd2Fe14B/α-Fe

  • R. Justin Joseyphus , A. Narayanasamy , L. K. Varga and B. Jeyadevan
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

The exchange coupling between Nd2Fe14B/α-Fe phases is investigated for Nd10Fe85B5 and Nd11Fe80B9 melt spun ribbons. The exchange coupling is present in Nd10Fe85B5 ribbons when the grain size of the α-Fe phase is as high as 30 nm due to better inter-grain interaction. The exchange coupling is enhanced when the exchange length increases due to the reduction in the value of magnetocrystalline anisotropy constant which is verified by δM measurements at various temperatures. The as-spun nanocomposite ribbons show both exchange and dipolar couplings, whereas annealing results in an increase in the strength of the exchange coupling due to the removal of grain boundary anisotropy as demonstrated from δM studies.


* Correspondence address, Dr. R. Justin Joseyphus Graduate School of Environmental Studies Tohoku University, Aramaki Aoba-ku, Sendai 9808579, Japan Tel.: +81 22 795 7412 Fax: +81 22 795 7412 E-mail:

References

[1] E.F.Kneller, R.Hawig: IEEE Trans. Magn.27 (1991) 3588.10.1109/20.102931Search in Google Scholar

[2] R.Skomski, J.M.D.Coey: Phys. Rev. B48 (1993) 15812.10.1103/PhysRevB.48.15812Search in Google Scholar PubMed

[3] R.Fisher, T.Leineweber, H.Kronmüller: Phys. Rev. B57 (1998) 10723.10.1103/PhysRevB.57.10723Search in Google Scholar

[4] S.Yang, X.P.Song, B.X.Gu, Y.W.Du: J. Alloys Compd.394 (2005) 1.10.1016/j.jallcom.2004.08.106Search in Google Scholar

[5] W.Gong, G.C.Hadjipanayis, R.I.Krause: J. Appl. Phys.75 (1994) 6649.10.1063/1.356883Search in Google Scholar

[6] J.Bauer, M.Seeger, A.Zern, H.Kronmüller: J. Appl. Phys.80 (1996) 1667.10.1063/1.362965Search in Google Scholar

[7] Q.Chen, B.M.Ma, B.Lu, Q.Huan, D.E.Laughlin: J. Appl. Phys.85 (1999) 5917.10.1063/1.369913Search in Google Scholar

[8] J.Garcia-Otero, M.Porto, J.Rivas: J. Appl. Phys.87 (2000) 7376.10.1063/1.372996Search in Google Scholar

[9] P.E.Kelly, K.Grandy, P.I.Mayo, R.W.Chantrell: IEEE Trans. Magn.25 (1989) 3880.10.1109/20.42466Search in Google Scholar

[10] Y.J.Tang, F.T.Parker, H.Harper, A.E.Berkowitz, K.Vecchio, A.Rohatigi, B.M.Ma: App. Phys. Lett.86 (2005) 122507.10.1063/1.1890474Search in Google Scholar

[11] H.Chiriac, M.Marinescu: Eur. Magn. Mater. Appl. Mater. Sci. Forum.373 (2001) 293.10.4028/www.scientific.net/MSF.373-376.293Search in Google Scholar

[12] R.J.Joseyphus, A.Narayanasamy, D.Prabhu, L.K.Varga, B.Jeyadevan, C.N.Chinnasamy, K.Tohji, N.Ponpandian: Phys. stat. sol. (c).1 (2004) 3489.10.1002/pssc.200405488Search in Google Scholar

[13] H.A.Davies: J. Magn. Magn. Mater.157–158 (1996) 11.10.1016/0304-8853(95)01271-0Search in Google Scholar

[14] M.Uehara, S.Hirosawa, H.Kanekiyo, N.Sano, T.Tomida: Nanostruct. Mater.10 (1998) 151.10.1016/S0965-9773(98)00057-9Search in Google Scholar

[15] R.Fischer, H.Kronmüller: Phys. Rev. B54 (1996) 7284.10.1103/PhysRevB.54.7284Search in Google Scholar

[16] B.Z.Cui, X.K.Sun, L.Y.Xiong, S.T.Cao, X.X.Zhang, W.Liu, D.Y.Geng, Z.D.Zhang: J. Alloys Compds.340 (2002) 242.10.1016/S0925-8388(02)00014-2Search in Google Scholar

[17] C.Wang, M.Yan, W.Y.Zhang: J. Magn. Magn. Mater.306 (2006) 195.10.1016/j.jmmm.2006.02.243Search in Google Scholar

[18] B.-G.Shen, L.-Y.Yang, H.-Q.Guo, J.-G.Zhao: J. Appl. Phys.75 (1994) 6312.10.1063/1.355383Search in Google Scholar

[19] R.Ramesh: J. Appl. Phys.68 (1990) 5772.10.1063/1.346946Search in Google Scholar

[20] C.H.de Groot, K.de Kort: J. Appl. Phys.85 (1999) 8312.10.1063/1.370675Search in Google Scholar

[21] E.C.Stoner, E.P.Wohlfarth: Phil. Trans. Royal Soc. London, Ser., A240 (1948) 599.10.1098/rsta.1948.0007Search in Google Scholar

[22] A.E.Berkowitz, E.Kneller (Eds.): Magnetism and Metallurgy, Vol. 1, Academic press, New York (1969) 59.Search in Google Scholar

[23] C.Dean, R.W.Chantrell: IEEE Trans. Magn.27 (1991) 4769.10.1109/20.278941Search in Google Scholar

[24] T.Schrefl, J.Fidler, H.Kronmüller: Phys. Rev. B49 (1994) 6100.10.1103/PhysRevB.49.6100Search in Google Scholar

[25] T.Schrefl, J.Fidler: J. Magn. Magn. Mater.177 (1998) 970.10.1016/S0304-8853(97)00653-7Search in Google Scholar

[26] H.Qu, J.Y.Li: Phys. Rev. B68 (2003) 212402.10.1103/PhysRevB.68.212402Search in Google Scholar

[27] R.J.Joseyphus, A.Narayanasamy, R.Gopalan, V.Chandrasekaran, B.Jeyadevan, K.Tohji: Mater. Trans.47 (2006) 2264.10.2320/matertrans.47.2264Search in Google Scholar

[28] K.H.J.Buschow: Rep. Prog. Phys.54 (1991) 1123.10.1088/0034-4885/54/9/001Search in Google Scholar

[29] M.Sagawa, S.Hirosawa, H.Yamamoto, S.Fujimura, Y.Matsuura: Jpn. J. Appl. Phys.26 (1987) 785.10.1143/JJAP.26.785Search in Google Scholar

[30] R.Fisher, H.Kronmüller: Phys. stat. sol. (a).166 (1998) 489.10.1002/(SICI)1521-396X(199803)166:1<489::AID-PSSA489>3.0.CO;2-SSearch in Google Scholar

[31] H.Kronmüller, T.Schrefl: J. Magn. Magn. Mater.129 (1994) 66.10.1016/0304-8853(94)90431-6Search in Google Scholar

[32] Y.Gao, J.Zhu, Y.Weng, E.B.Park, C.J.Yang: J. Magn. Magn. Mater.191 (1999) 146.10.1016/S0304-8853(98)00306-0Search in Google Scholar

[33] J.M.MacLaren, S.D.Willoughby: J. Appl. Phys.89 (2001) 6895.10.1063/1.1357839Search in Google Scholar

Received: 2007-1-19
Accepted: 2007-10-14
Published Online: 2013-06-11
Published in Print: 2008-01-01

© 2008, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Prof. Dr.-Ing. habil. Dr.-Ing. E. h. Werner Schatt zum 85. Geburtstag
  5. Basic
  6. In-situ reaction synthesis and decomposition of Ta2AlC
  7. A new theoretical equation for temperature dependent self-diffusion coefficients of pure liquid metals
  8. Thermodynamic characterization of liquid alloys with demixing tendency: Bi–Ga
  9. Space charge effects in confined ceramic systems
  10. Solute transport and phase composition in an Al–Mg–Si alloy solidified under conditions of forced flow
  11. Evidence of α → ω phase transition in titanium after high pressure torsion
  12. Thermodynamic properties and elastic constants of Nd–Mg intermetallics: a molecular dynamics study
  13. Microstructure, texture and mechanical properties of the magnesium alloy AZ31 processed by ECAP
  14. Applied
  15. Effect of solidification microstructure and Ca additions on creep strength of magnesium alloy AZ91 processed by Thixomolding
  16. Magnetic hardening mechanism of PrCo5-based ribbons with C addition prepared by melt spinning
  17. Studies on the exchange and dipolar couplings in Nd2Fe14B/α-Fe
  18. Microstructural characteristics and elevated temperature wear of Ti-11Si-16Al alloy
  19. Nickel coating on some organic and carbon fibres by chemical plating
  20. Wear and corrosion properties of nanocrystalline coatings on stainless steel produced by plasma electrolytic nitrocarburizing
  21. The characterisation of microstructural changes in rapidly solidified Al–Fe alloys through measurement of their electrical resistance
  22. Solid inclusion cakes formed during pressure filtration tests of liquid aluminum alloys
  23. Performance of Ni/YSZ cermet cathode prepared by mechanical alloying for high temperature electrolysis of water vapor (steam): effect of anode and cathode thicknesses on the efficiency of hydrogen production
  24. Review
  25. Practical aspects and implications of interfaces in glass-ceramics: a review
  26. Notifications
  27. DGM News
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101597/html
Scroll to top button