Startseite Magnetic hardening mechanism of PrCo5-based ribbons with C addition prepared by melt spinning
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Magnetic hardening mechanism of PrCo5-based ribbons with C addition prepared by melt spinning

  • W. Y. Zhang , B. Yang , M. Stoica , J. Shen , B. G. Shen und J. Eckert
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The effect of C addition on texture, phase formation, and magnetic properties of PrCo5 – xCx (x = 0–0.5) ribbons has been examined. C addition does not favor the formation of (200) texture perpendicular to the ribbon plane for the ribbons spun at 5 m s−1. As x increases, the fraction of PrC2 nonmagnetic phase increases, which enhances the resistance of domain wall movement and thus leads to an obvious coercivity increase in the specimens. The increase in the wheel speed further strengthens the beneficial effect of C addition on the magnetic properties of the PrCo5-based ribbons. When the wheel speed is increased to 25 m s−1, the coercivity and the energy product of the ribbons increase from 1.6 kOe and 1.6 MGOe to 6.7 kOe and 4.3 MGOe with the increase of x from 0 to 0.5. Simultaneously, the coercivity mechanism changes from the reverse domain nucleation type to the domain wall pinning type.


* Correspondence address, Dr. Wenyong Zhang, IFW Dresden, Institute for Complex Materials, Helmholtzstr. 20, D-01069 Dresden, Germany, Tel.: +49 351 465 9693, Fax: +49 351 465 9452, E-mail:

References

[1] J.F.Liu, T.Chui, D.Dimitrov, G.C.Hadjipanayis: Appl. Phys. Lett.73 (1998) 3007.10.1063/1.122659Suche in Google Scholar

[2] D.Goll, I.Kleinschroth, W.Sigle, H.Kronmüller: Appl. Phys. Lett.76 (2000) 1054.10.1063/1.125936Suche in Google Scholar

[3] A.M.Gabay, W.Tang, Y.Zhang, G.C.Hadjipanayis: Appl. Phys. Lett.78 (2001) 1595.10.1063/1.1354670Suche in Google Scholar

[4] J.Zhou, R.Skomski, C.Chen, G.C.Hadjipanayis, D.J.Sellmyer: Appl. Phys. Lett.77 (2000) 1514.10.1063/1.1290719Suche in Google Scholar

[5] A.T.Pedziwiatr, S.G.Sankar, W.E.Wallace: J. Appl. Phys.63 (1988) 3710.10.1063/1.340643Suche in Google Scholar

[6] H.Ido, K.Konno, S.F.Cheng, W.E.Wallace, S.G.Sankar: J. Appl. Phys.67 (1990) 4638.10.1063/1.344838Suche in Google Scholar

[7] A.R.Yan, W.Y.Zhang, H.W.Zhang, B.G.Shen: J. Appl. Phys.88 (2000) 2787.10.1063/1.1286245Suche in Google Scholar

[8] X.G.Zhao, Z.D.Zhang, B.Z.Cui, W.J.Ren, W.Liu, D.Y.Geng: J. Appl. Phys.93 (2003) 8125.10.1063/1.1541649Suche in Google Scholar

[9] A.K.Patra, V.Neu, S.Fähler, H.Wendrock, L.Schultz: J. Appl. Phys.100 (2006) 043905.10.1063/1.2226087Suche in Google Scholar

[10] E.M.T.Velu, R.T.Obermyer, S.G.Sankar, W.E.Wallace: J. Less-Common Met.148 (1989) 67.10.1016/0022-5088(89)90011-8Suche in Google Scholar

[11] W.E.Wallace: Prog. Solid State Chem.16 (1985) 127.10.1016/0079-6786(85)90003-2Suche in Google Scholar

[12] J.Tsui, K.Strnat: Appl. Phys. Lett.18 (1971) 107.10.1063/1.1653582Suche in Google Scholar

[13] A.M.Gabay, Y.Zhang, G.C.Hadjipanayis: J. Magn. Magn. Mater.294 (2005) 287.10.1016/j.jmmm.2004.12.025Suche in Google Scholar

[14] X.G.Zhao, Z.D.Zhang, Q.Yao, W.J.Ren, J.J.Liu, W.Liu, D.Y.Geng: J. Alloys Compd. (in press).Suche in Google Scholar

[15] D.J.Branagan, M.J.Kramer, Y.L.Tang, R.W.McCallum: J. Appl. Phys.87 (2000) 6737.10.1063/1.372825Suche in Google Scholar

[16] W.E.Wallace, R.S.Craig, H.O.Gupta, S.Hirosawa, A.Pedziwiatr, E.Oswald, E.Schwab: IEEE Trans. Magn.20 (1984) 1559.10.1109/TMAG.1984.1063241Suche in Google Scholar

[17] Z.M.Chen, Y.Zhang, G.C.Hadjipanayis, J. Appl. Phys.88 (2000) 1547.10.1063/1.373853Suche in Google Scholar

[18] B.E.Meacham, D.J.Branagan: J. Appl. Phys.93 (2003) 7963.10.1063/1.1541656Suche in Google Scholar

[19] J.Kostogorova, J.E.Shield: J. Appl. Phys.99 (2006) 08B514.10.1063/1.2167349Suche in Google Scholar

[20] C.D.Fuerst, E.G.Brewer: J. Appl. Phys.74 (1993) 6907.10.1063/1.355336Suche in Google Scholar

[21] C.D.Fuerst, J.F.Herbst, C.B.Murphy, D.J.Van Wingerden: J. Appl. Phys.74 (1993) 4651.10.1063/1.354355Suche in Google Scholar

[22] L.H.Lewis, W.M.Bian, Y.Zhu, D.O.Welch: J. Appl. Phys.79 (1996) 351.10.1063/1.360837Suche in Google Scholar

[23] K.J.Strnat: Cobalt (Engl. Ed.)36 (1967) 133.Suche in Google Scholar

[24] W.Y.Zhang, B.G.Shen, Z.H.Cheng, J.Q.Li, L.Li, Y.Q.Zhou: Appl. Phys. Lett.79 (2001) 1843.10.1063/1.1401789Suche in Google Scholar

[25] W.Y.Zhang, C.B.Rong, J.Zhang, B.G.Shen, H.L.Du, J.S.Jiang, Y.C.Yang: J. Appl. Phys.92 (2002) 7647.10.1063/1.1524019Suche in Google Scholar

[26] Z.M.Chen, X.Meng-Burany, G.C.Hadjipanayis: Appl. Phys. Lett.75 (1999) 3165.10.1063/1.125265Suche in Google Scholar

[27] K.Durst, H.Kronmüller: J. Magn. Magn. Mater.68 (1987) 63.10.1016/0304-8853(87)90097-7Suche in Google Scholar

[28] P.Gaunt: Philos. Mag. B48 (1983) 261.10.1080/13642818308228288Suche in Google Scholar

Received: 2006-12-12
Accepted: 2007-6-22
Published Online: 2013-06-11
Published in Print: 2008-01-01

© 2008, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Prof. Dr.-Ing. habil. Dr.-Ing. E. h. Werner Schatt zum 85. Geburtstag
  5. Basic
  6. In-situ reaction synthesis and decomposition of Ta2AlC
  7. A new theoretical equation for temperature dependent self-diffusion coefficients of pure liquid metals
  8. Thermodynamic characterization of liquid alloys with demixing tendency: Bi–Ga
  9. Space charge effects in confined ceramic systems
  10. Solute transport and phase composition in an Al–Mg–Si alloy solidified under conditions of forced flow
  11. Evidence of α → ω phase transition in titanium after high pressure torsion
  12. Thermodynamic properties and elastic constants of Nd–Mg intermetallics: a molecular dynamics study
  13. Microstructure, texture and mechanical properties of the magnesium alloy AZ31 processed by ECAP
  14. Applied
  15. Effect of solidification microstructure and Ca additions on creep strength of magnesium alloy AZ91 processed by Thixomolding
  16. Magnetic hardening mechanism of PrCo5-based ribbons with C addition prepared by melt spinning
  17. Studies on the exchange and dipolar couplings in Nd2Fe14B/α-Fe
  18. Microstructural characteristics and elevated temperature wear of Ti-11Si-16Al alloy
  19. Nickel coating on some organic and carbon fibres by chemical plating
  20. Wear and corrosion properties of nanocrystalline coatings on stainless steel produced by plasma electrolytic nitrocarburizing
  21. The characterisation of microstructural changes in rapidly solidified Al–Fe alloys through measurement of their electrical resistance
  22. Solid inclusion cakes formed during pressure filtration tests of liquid aluminum alloys
  23. Performance of Ni/YSZ cermet cathode prepared by mechanical alloying for high temperature electrolysis of water vapor (steam): effect of anode and cathode thicknesses on the efficiency of hydrogen production
  24. Review
  25. Practical aspects and implications of interfaces in glass-ceramics: a review
  26. Notifications
  27. DGM News
Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101607/html
Button zum nach oben scrollen